Journal articles
Lear L, Hesse E, Buckling A, Vos M (In Press). Copper Selects for Siderophore-Mediated Virulence in Pseudomonas Aeruginosa.
Lear L, Hesse E, Buckling A, Vos M (In Press). Copper selects for siderophore-mediated virulence in <i>Pseudomonas aeruginosa</i>.
Abstract:
Copper selects for siderophore-mediated virulence in Pseudomonas aeruginosa
AbstractIron is essential for almost all bacterial pathogens and consequently it is actively withheld by their hosts. However, the production of extracellular siderophores enables iron sequestration by pathogens, increasing their virulence. Another function of siderophores is extracellular detoxification of non-ferrous metals. Here, we experimentally link the detoxification and virulence roles of siderophores by testing whether the opportunistic pathogen Pseudomonas aeruginosa displays greater virulence after exposure to copper. To do this, we incubated P. aeruginosa under different environmentally relevant copper regimes for either two or twelve days. Subsequent growth in a copper-free environment removed phenotypic effects, before we quantified pyoverdine production (the primary siderophore produced by P. aeruginosa), and virulence using the Galleria mellonella infection model. Copper selected for increased pyoverdine production, which was positively correlated with virulence. This effect increased with time, such that populations incubated with high copper for twelve days were the most virulent. Replication of the experiment with a non-pyoverdine producing strain of P. aeruginosa demonstrated that pyoverdine production was largely responsible for the change in virulence. Therefore we here show a direct link between metal stress and bacterial virulence, highlighting another dimension of the detrimental effects of metal pollution on human health.
Abstract.
Lear L, Hesse E, Newsome L, Gaze W, Buckling A, Vos M (2023). The effect of metal remediation on the virulence and antimicrobial resistance of the opportunistic pathogen <i>Pseudomonas aeruginosa</i>.
Evolutionary Applications,
16(7), 1377-1389.
Abstract:
The effect of metal remediation on the virulence and antimicrobial resistance of the opportunistic pathogen Pseudomonas aeruginosa
AbstractAnthropogenic metal pollution can result in co‐selection for antibiotic resistance and potentially select for increased virulence in bacterial pathogens. Metal‐polluted environments can select for the increased production of siderophore molecules to detoxify non‐ferrous metals. However, these same molecules also aid the uptake of ferric iron, a limiting factor for within‐host pathogen growth, and are consequently a virulence factor. Anthropogenic methods to remediate environmental metal contamination commonly involve amendment with lime‐containing materials. However, whether this reduces in situ co‐selection for antibiotic resistance and siderophore‐mediated virulence remains unknown. Here, using microcosms containing non‐sterile metal‐contaminated river water and sediment, we test whether liming reduces co‐selection for these pathogenicity traits in the opportunistic pathogen Pseudomonas aeruginosa. To account for the effect of environmental structure, which is known to impact siderophore production, microcosms were incubated under either static or shaking conditions. Evolved P. aeruginosa populations had greater fitness in the presence of toxic concentrations of copper than the ancestral strain and showed increased resistance to the clinically relevant antibiotics apramycin, cefotaxime and trimethoprim, regardless of lime addition or environmental structure. Although we found virulence to be significantly associated with siderophore production, neither virulence nor siderophore production significantly differed between the four treatments. Furthermore, liming did not mitigate metal‐imposed selection for antibiotic resistance or virulence in P. aeruginosa. Consequently, metal‐contaminated environments may select for antibiotic resistance and virulence traits even when treated with lime.
Abstract.
Lear L, Padfield D, Dowsett T, Jones M, Kay S, Hayward A, Vos M (2022). Bacterial colonisation dynamics of household plastics in a coastal environment.
Sci Total Environ,
838(Pt 4).
Abstract:
Bacterial colonisation dynamics of household plastics in a coastal environment.
Accumulation of plastics in the marine environment has widespread detrimental consequences for ecosystems and wildlife. Marine plastics are rapidly colonised by a wide diversity of bacteria, including human pathogens, posing potential risks to health. Here, we investigate the effect of polymer type, residence time and estuarine location on bacterial colonisation of common household plastics, including pathogenic bacteria. We submerged five main household plastic types: low-density PE (LDPE), high-density PE (HDPE), polypropylene (PP), polyvinyl chloride (PVC) and polyethylene terephthalate (PET) at an estuarine site in Cornwall (U.K.) and tracked bacterial colonisation dynamics. Using both culture-dependent and culture-independent approaches, we found that bacteria rapidly colonised plastics irrespective of polymer type, reaching culturable densities of up to 1000 cells cm3 after 7 weeks. Community composition of the biofilms changed over time, but not among polymer types. The presence of pathogenic bacteria, quantified using the insect model Galleria mellonella, increased dramatically over a five-week period, with Galleria mortality increasing from 4% in week one to 65% in week five. No consistent differences in virulence were observed between polymer types. Pathogens isolated from plastic biofilms using Galleria enrichment included Serratia and Enterococcus species and they harboured a wide range of antimicrobial resistance genes. Our findings show that plastics in coastal waters are rapidly colonised by a wide diversity of bacteria independent of polymer type. Further, our results show that marine plastic biofilms become increasingly associated with virulent bacteria over time.
Abstract.
Author URL.
Lear L, Padfield D, Inamine H, Shea K, Buckling A (2022). Disturbance-mediated invasions are dependent on community resource abundance.
Ecology,
103(8).
Abstract:
Disturbance-mediated invasions are dependent on community resource abundance.
Disturbances can facilitate biological invasions, with the associated increase in resource availability being a proposed cause. Here, we experimentally tested the interactive effects of disturbance regime (different frequencies of biomass removal at equal intensities) and resource abundance on invasion success using a factorial design containing five disturbance frequencies and three resource levels. We invaded populations of the bacterium Pseudomonas fluorescens with two ecologically different invader morphotypes: a fast-growing "colonizer" type and a slower growing "competitor" type. As resident populations were altered by the treatments, we additionally tested their effect on invader success. Disturbance frequency and resource abundance interacted to affect the success of both invaders, but this interaction differed between the invader types. The success of the colonizer type was positively affected by disturbance under high resources but negatively under low. However, disturbance negatively affected the success of the competitor type under high resource abundance but not under low or medium. Resident population changes did not alter invader success beyond direct treatment effects. We therefore demonstrate that the same disturbance regime can either be beneficial or detrimental for an invader depending on both community resource abundance and its life history. These results may help to explain some of the inconsistencies found in the disturbance-invasion literature.
Abstract.
Author URL.
Lear L, Hesse E, Shea K, Buckling A (2020). Disentangling the mechanisms underpinning disturbance-mediated invasion.
Proceedings of the Royal Society B: Biological Sciences,
287(1919).
Abstract:
Disentangling the mechanisms underpinning disturbance-mediated invasion
Disturbances can play a major role in biological invasions: by destroying biomass, they alter habitat and resource abundances. Previous field studies suggest that disturbance-mediated invader success is a consequence of resource influxes, but the importance of other potential covarying causes, notably the opening up of habitats, have yet to be directly tested. Using experimental populations of the bacterium Pseudomonas fluorescens, we determined the relative importance of disturbance-mediated habitat opening and resource influxes, plus any interaction between them, for invader success of two ecologically distinct morphotypes. Resource addition increased invasibility, while habitat opening had little impact and did not interact with resource addition. Both invaders behaved similarly, despite occupying different ecological niches in the microcosms. Treatment also affected the composition of the resident population, which further affected invader success. Our results provide experimental support for the observation that resource input is a key mechanism through which disturbance increases invasibility.
Abstract.