Journal articles
De Franco E, Wakeling M, Frew R, Russ-Silsby J, Peters C, Marks S, Hattersley A, Flanagan S (In Press). A biallelic loss-of-function PDIA6 variant in a second patient with polycystic kidney disease, infancy-onset diabetes, and microcephaly. Clinical Genetics
Wakeling M, Owens NDL, Hopkinson JR, Johnson MB, Houghton JAL, Dastamani A, Flaxman CS, Wyatt RC, Hewat TI, Hopkins JJ, et al (In Press). A novel disease mechanism leading to the expression of a disallowed gene in the pancreatic beta-cell identified by non-coding, regulatory mutations controlling HK1.
Nature GeneticsAbstract:
A novel disease mechanism leading to the expression of a disallowed gene in the pancreatic beta-cell identified by non-coding, regulatory mutations controlling HK1
Gene expression is tightly regulated with many genes exhibiting cell-specific silencing when their protein product would disrupt normal cellular function. This silencing is largely controlled by non-coding elements and their disruption might cause human disease. We performed gene-agnostic screening of the non-coding regions to discover new molecular causes of congenital hyperinsulinism. This identified 14 non-coding de novo mutations affecting a 42bp conserved region encompassed by a regulatory. element in intron 2 of Hexokinase 1 (HK1), a pancreatic beta-cell ‘disallowed’ gene. We demonstrated that these mutations resulted in expression of HK1 in the pancreatic beta-cells causing inappropriate insulin secretion and congenital hyperinsulinism. These mutations identify a regulatory region critical for cell-specific silencing. Importantly, this has revealed a new disease mechanism for non-coding mutations that cause inappropriate expression of a disallowed gene.
Abstract.
Laver TW, Wakeling M, Hua JHY, Houghton J, Hussain K, Ellard S, Flanagan S (In Press). Comprehensive screening shows that mutations in the known syndromic genes are rare in infants presenting with hyperinsulinaemic hypoglycaemia. Clinical Endocrinology
Alakbarzade V, Iype T, Chioza BA, Harlalka GV, Singh R, Hardy H, Sreekantan-Nair A, Proukakis C, Kathryn J P, Clark LN, et al (In Press). Copy number variation of LINGO1 in familial dystonic tremor. Neurology Genetics
De Franco E, Caswell R, Johnson M, Wakeling M, Zung A, Dũng VC, Bích Ngọc CT, Goonetilleke R, Vivanco Jury M, El- Khateeb M, et al (In Press). De novo mutations in EIF2B1 affecting eIF2 signaling cause neonatal/early onset diabetes and transient hepatic dysfunction. Diabetes
De Franco E, Wakeling M, Flanagan S, Hattersley A (In Press). Infancy-onset diabetes caused by de-regulated AMPylation of the human endoplasmic reticulum chaperone BiP. EMBO Molecular Medicine
De Franco E, Owens N, Hattersley A, Flanagan S, Wakeling M, Johnson M, Wright C (In Press). Primate-specific ZNF808 is essential for pancreatic development in humans. Nature Genetics
Amaratunga SA, Hussein Tayeb T, Muhamad Sediq RN, Hama Salih FK, Dusatkova P, Wakeling MN, De Franco E, Pruhova S, Lebl J (2023). Paediatric diabetes subtypes in a consanguineous population: a single-centre cohort study from Kurdistan, Iraq.
DiabetologiaAbstract:
Paediatric diabetes subtypes in a consanguineous population: a single-centre cohort study from Kurdistan, Iraq
Abstract
. Aims/hypothesis
. Monogenic diabetes is estimated to account for 1–6% of paediatric diabetes cases in primarily non-consanguineous populations, while the incidence and genetic spectrum in consanguineous regions are insufficiently defined. In this single-centre study we aimed to evaluate diabetes subtypes, obtain the consanguinity rate and study the genetic background of individuals with syndromic and neonatal diabetes in a population with a high rate of consanguinity.
.
. Methods
. Data collection was carried out cross-sectionally in November 2021 at the paediatric diabetic clinic, Dr Jamal Ahmad Rashed Hospital, in Sulaimani, Kurdistan, Iraq. At the time of data collection, 754 individuals with diabetes (381 boys) aged up to 16 years were registered. Relevant participant data was obtained from patient files. Consanguinity status was known in 735 (97.5%) participants. Furthermore, 12 families of children with neonatal diabetes and seven families of children with syndromic diabetes consented to genetic testing by next-generation sequencing. Prioritised variants were evaluated using the American College of Medical Genetics and Genomics guidelines and confirmed by Sanger sequencing.
.
. Results
. A total of 269 of 735 participants (36.5%) with known consanguinity status were offspring of consanguineous families. An overwhelming majority of participants (714/754, 94.7%) had clinically defined type 1 diabetes (35% of them were born to consanguineous parents), whereas only eight (1.1%) had type 2 diabetes (38% consanguineous). Fourteen (1.9%) had neonatal diabetes (50% consanguineous), seven (0.9%) had syndromic diabetes (100% consanguineous) and 11 (1.5%) had clinically defined MODY (18% consanguineous). We found that consanguinity was significantly associated with syndromic diabetes (p=0.0023) but not with any other diabetes subtype. The genetic cause was elucidated in ten of 12 participants with neonatal diabetes who consented to genetic testing (homozygous variants in GLIS3 [sibling pair], PTF1A and ZNF808 and heterozygous variants in ABCC8 and INS) and four of seven participants with syndromic diabetes (homozygous variants in INSR, SLC29A3 and WFS1 [sibling pair]). In addition, a participant referred as syndromic diabetes was diagnosed with mucolipidosis gamma and probably has type 2 diabetes.
.
. Conclusions/interpretation
. This unique single-centre study confirms that, even in a highly consanguineous population, clinically defined type 1 diabetes is the prevailing paediatric diabetes subtype. Furthermore, a pathogenic cause of monogenic diabetes was identified in 83% of tested participants with neonatal diabetes and 57% of participants with syndromic diabetes, with most variants being homozygous. Causative genes in our consanguineous participants were markedly different from genes reported from non-consanguineous populations and also from those reported in other consanguineous populations. To correctly diagnose syndromic diabetes in consanguineous populations, it may be necessary to re-evaluate diagnostic criteria and include additional phenotypic features such as short stature and hepatosplenomegaly.
.
. Graphical Abstract
.
.
Abstract.
Khalaf-Nazzal R, Fasham J, Inskeep KA, Blizzard LE, Leslie JS, Wakeling MN, Ubeyratna N, Mitani T, Griffith JL, Baker W, et al (2022). Bi-allelic CAMSAP1 variants cause a clinically recognizable neuronal migration disorder.
Am J Hum Genet,
109(11), 2068-2079.
Abstract:
Bi-allelic CAMSAP1 variants cause a clinically recognizable neuronal migration disorder.
Non-centrosomal microtubules are essential cytoskeletal filaments that are important for neurite formation, axonal transport, and neuronal migration. They require stabilization by microtubule minus-end-targeting proteins including the CAMSAP family of molecules. Using exome sequencing on samples from five unrelated families, we show that bi-allelic CAMSAP1 loss-of-function variants cause a clinically recognizable, syndromic neuronal migration disorder. The cardinal clinical features of the syndrome include a characteristic craniofacial appearance, primary microcephaly, severe neurodevelopmental delay, cortical visual impairment, and seizures. The neuroradiological phenotype comprises a highly recognizable combination of classic lissencephaly with a posterior more severe than anterior gradient similar to PAFAH1B1(LIS1)-related lissencephaly and severe hypoplasia or absence of the corpus callosum; dysplasia of the basal ganglia, hippocampus, and midbrain; and cerebellar hypodysplasia, similar to the tubulinopathies, a group of monogenic tubulin-associated disorders of cortical dysgenesis. Neural cell rosette lineages derived from affected individuals displayed findings consistent with these phenotypes, including abnormal morphology, decreased cell proliferation, and neuronal differentiation. Camsap1-null mice displayed increased perinatal mortality, and RNAScope studies identified high expression levels in the brain throughout neurogenesis and in facial structures, consistent with the mouse and human neurodevelopmental and craniofacial phenotypes. Together our findings confirm a fundamental role of CAMSAP1 in neuronal migration and brain development and define bi-allelic variants as a cause of a clinically distinct neurodevelopmental disorder in humans and mice.
Abstract.
Author URL.
Laver TW, Wakeling MN, Knox O, Colclough K, Wright CF, Ellard S, Hattersley AT, Weedon MN, Patel KA (2022). Evaluation of Evidence for Pathogenicity Demonstrates That BLK, KLF11, and PAX4 Should Not be Included in Diagnostic Testing for MODY.
Diabetes,
71(5), 1128-1136.
Abstract:
Evaluation of Evidence for Pathogenicity Demonstrates That BLK, KLF11, and PAX4 Should Not be Included in Diagnostic Testing for MODY.
Maturity-onset diabetes of the young (MODY) is an autosomal dominant form of monogenic diabetes, reported to be caused by variants in 16 genes. Concern has been raised about whether variants in BLK (MODY11), KLF11 (MODY7), and PAX4 (MODY9) cause MODY. We examined variant-level genetic evidence (cosegregation with diabetes and frequency in population) for published putative pathogenic variants in these genes and used burden testing to test gene-level evidence in a MODY cohort (n = 1,227) compared with a control population (UK Biobank [n = 185,898]). For comparison we analyzed well-established causes of MODY, HNF1A, and HNF4A. The published variants in BLK, KLF11, and PAX4 showed poor cosegregation with diabetes (combined logarithm of the odds [LOD] scores ≤1.2), compared with HNF1A and HNF4A (LOD scores >9), and are all too common to cause MODY (minor allele frequency >4.95 × 10-5). Ultra-rare missense and protein-truncating variants (PTV) were not enriched in a MODY cohort compared with the UK Biobank population (PTV P > 0.05, missense P > 0.1 for all three genes) while HNF1A and HNF4A were enriched (P < 10-6). Findings of sensitivity analyses with different population cohorts supported our results. Variant and gene-level genetic evidence does not support BLK, KLF11, or PAX4 as a cause of MODY. They should not be included in MODY diagnostic genetic testing.
Abstract.
Author URL.
French CE, Dolling H, Mégy K, Sanchis-Juan A, Kumar A, Delon I, Wakeling M, Mallin L, Agrawal S, Austin T, et al (2022). Refinements and considerations for trio whole-genome sequence analysis when investigating Mendelian diseases presenting in early childhood.
Human Genetics and Genomics Advances,
3(3).
Abstract:
Refinements and considerations for trio whole-genome sequence analysis when investigating Mendelian diseases presenting in early childhood
To facilitate early deployment of whole-genome sequencing (WGS) for severely ill children, a standardized pipeline for WGS analysis with timely turnaround and primary care pediatric uptake is needed. We developed a bioinformatics pipeline for comprehensive gene-agnostic trio WGS analysis of children suspected of having an undiagnosed monogenic disease that included detection and interpretation of primary genetic mechanisms of disease, including SNVs/indels, CNVs/SVs, uniparental disomy (UPD), imprinted genes, short tandem repeat expansions, mobile element insertions, SMN1/2 copy number calling, and mitochondrial genome variants. We assessed primary care practitioner experience and competence in a large cohort of 521 families (comprising 90% WGS trios). Children were identified by primary practitioners for recruitment, and we used the UK index of multiple deprivation to confirm lack of patient socio-economic status ascertainment bias. of the 521 children sequenced, 176 (34%) received molecular diagnoses, with rates as high as 45% for neurology clinics. Twenty-three of the diagnosed cases (13%) required bespoke methods beyond routine SNV/CNV analysis. In our multidisciplinary clinician user experience assessment, both pediatricians and clinical geneticists expressed strong support for rapid WGS early in the care pathway, but requested further training in determining patient selection, consenting, and variant interpretation. Rapid trio WGS provides an efficacious single-pass screening test for children when deployed by primary practitioners in clinical settings that carry high a priori risk for rare pediatric disease presentations.
Abstract.
Laver TW, De Franco E, Johnson MB, Patel KA, Ellard S, Weedon MN, Flanagan SE, Wakeling MN (2022). SavvyCNV: Genome-wide CNV calling from off-target reads.
PLOS Computational Biology,
18(3), e1009940-e1009940.
Abstract:
SavvyCNV: Genome-wide CNV calling from off-target reads
Identifying copy number variants (CNVs) can provide diagnoses to patients and provide important biological insights into human health and disease. Current exome and targeted sequencing approaches cannot detect clinically and biologically-relevant CNVs outside their target area. We present SavvyCNV, a tool which uses off-target read data from exome and targeted sequencing data to call germline CNVs genome-wide. Up to 70% of sequencing reads from exome and targeted sequencing fall outside the targeted regions. We have developed a new tool, SavvyCNV, to exploit this ‘free data’ to call CNVs across the genome. We benchmarked SavvyCNV against five state-of-the-art CNV callers using truth sets generated from genome sequencing data and Multiplex Ligation-dependent Probe Amplification assays. SavvyCNV called CNVs with high precision and recall, outperforming the five other tools at calling CNVs genome-wide, using off-target or on-target reads from targeted panel and exome sequencing. We then applied SavvyCNV to clinical samples sequenced using a targeted panel and were able to call previously undetected clinically-relevant CNVs, highlighting the utility of this tool within the diagnostic setting. SavvyCNV outperforms existing tools for calling CNVs from off-target reads. It can call CNVs genome-wide from targeted panel and exome data, increasing the utility and diagnostic yield of these tests. SavvyCNV is freely available at https://github.com/rdemolgen/SavvySuite.
Abstract.
Zhang X, Wakeling M, Ware J, Whiffin N (2021). Annotating high-impact 5'untranslated region variants with the UTRannotator.
Bioinformatics,
37(8), 1171-1173.
Abstract:
Annotating high-impact 5'untranslated region variants with the UTRannotator.
SUMMARY: Current tools to annotate the predicted effect of genetic variants are heavily biased towards protein-coding sequence. Variants outside of these regions may have a large impact on protein expression and/or structure and can lead to disease, but this effect can be challenging to predict. Consequently, these variants are poorly annotated using standard tools. We have developed a plugin to the Ensembl Variant Effect Predictor, the UTRannotator, that annotates variants in 5'untranslated regions (5'UTR) that create or disrupt upstream open reading frames. We investigate the utility of this tool using the ClinVar database, providing an annotation for 31.9% of all 5'UTR (likely) pathogenic variants, and highlighting 31 variants of uncertain significance as candidates for further follow-up. We will continue to update the UTRannotator as we gain new knowledge on the impact of variants in UTRs. AVAILABILITY AND IMPLEMENTATION: UTRannotator is freely available on Github: https://github.com/ImperialCardioGenetics/UTRannotator. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Abstract.
Author URL.
Salter CG, Cai Y, Lo B, Helman G, Taylor H, McCartney A, Leslie JS, Accogli A, Zara F, Traverso M, et al (2021). Biallelic PI4KA variants cause neurological, intestinal and immunological disease.
Brain,
144(12), 3597-3610.
Abstract:
Biallelic PI4KA variants cause neurological, intestinal and immunological disease.
Phosphatidylinositol 4-kinase IIIα (PI4KIIIα/PI4KA/OMIM:600286) is a lipid kinase generating phosphatidylinositol 4-phosphate (PI4P), a membrane phospholipid with critical roles in the physiology of multiple cell types. PI4KIIIα's role in PI4P generation requires its assembly into a heterotetrameric complex with EFR3, TTC7 and FAM126. Sequence alterations in two of these molecular partners, TTC7 (encoded by TTC7A or TCC7B) and FAM126, have been associated with a heterogeneous group of either neurological (FAM126A) or intestinal and immunological (TTC7A) conditions. Here we show that biallelic PI4KA sequence alterations in humans are associated with neurological disease, in particular hypomyelinating leukodystrophy. In addition, affected individuals may present with inflammatory bowel disease, multiple intestinal atresia and combined immunodeficiency. Our cellular, biochemical and structural modelling studies indicate that PI4KA-associated phenotypical outcomes probably stem from impairment of PI4KIIIα-TTC7-FAM126's organ-specific functions, due to defective catalytic activity or altered intra-complex functional interactions. Together, these data define PI4KA gene alteration as a cause of a variable phenotypical spectrum and provide fundamental new insight into the combinatorial biology of the PI4KIIIα-FAM126-TTC7-EFR3 molecular complex.
Abstract.
Author URL.
Montaser H, Patel KA, Balboa D, Ibrahim H, Lithovius V, Näätänen A, Chandra V, Demir K, Acar S, Ben-Omran T, et al (2021). Loss of MANF Causes Childhood-Onset Syndromic Diabetes Due to Increased Endoplasmic Reticulum Stress.
Diabetes,
70(4), 1006-1018.
Abstract:
Loss of MANF Causes Childhood-Onset Syndromic Diabetes Due to Increased Endoplasmic Reticulum Stress.
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-resident protein that plays a crucial role in attenuating ER stress responses. Although MANF is indispensable for the survival and function of mouse β-cells, its precise role in human β-cell development and function is unknown. In this study, we show that lack of MANF in humans results in diabetes due to increased ER stress, leading to impaired β-cell function. We identified two patients from different families with childhood diabetes and a neurodevelopmental disorder associated with homozygous loss-of-function mutations in the MANF gene. To study the role of MANF in human β-cell development and function, we knocked out the MANF gene in human embryonic stem cells and differentiated them into pancreatic endocrine cells. Loss of MANF induced mild ER stress and impaired insulin-processing capacity of β-cells in vitro. Upon implantation to immunocompromised mice, the MANF knockout grafts presented elevated ER stress and functional failure, particularly in recipients with diabetes. By describing a new form of monogenic neurodevelopmental diabetes syndrome caused by disturbed ER function, we highlight the importance of adequate ER stress regulation for proper human β-cell function and demonstrate the crucial role of MANF in this process.
Abstract.
Author URL.
Wakeling E, McEntagart M, Bruccoleri M, Shaw-Smith C, Stals KL, Wakeling M, Barnicoat A, Beesley C, DDD Study, Hanson-Kahn AK, et al (2021). Missense substitutions at a conserved 14-3-3 binding site in HDAC4 cause a novel intellectual disability syndrome.
HGG Adv,
2(1).
Abstract:
Missense substitutions at a conserved 14-3-3 binding site in HDAC4 cause a novel intellectual disability syndrome.
Histone deacetylases play crucial roles in the regulation of chromatin structure and gene expression in the eukaryotic cell, and disruption of their activity causes a wide range of developmental disorders in humans. Loss-of-function alleles of HDAC4, a founding member of the class IIa deacetylases, have been reported in brachydactyly-mental retardation syndrome (BDMR). However, while disruption of HDAC4 activity and deregulation of its downstream targets may contribute to the BDMR phenotype, loss of HDAC4 function usually occurs as part of larger deletions of chromosome 2q37; BDMR is also known as chromosome 2q37 deletion syndrome, and the precise role of HDAC4 within the phenotype remains uncertain. Thus, identification of missense variants should shed new light on the role of HDAC4 in normal development. Here, we report seven unrelated individuals with a phenotype distinct from that of BDMR, all of whom have heterozygous de novo missense variants that affect a major regulatory site of HDAC4, required for signal-dependent 14-3-3 binding and nucleocytoplasmic shuttling. Two individuals possess variants altering Thr244 or Glu247, whereas the remaining five all carry variants altering Pro248, a key residue for 14-3-3 binding. We propose that the variants in all seven individuals impair 14-3-3 binding (as confirmed for the first two variants by immunoprecipitation assays), thereby identifying deregulation of HDAC4 as a pathological mechanism in a previously uncharacterized developmental disorder.
Abstract.
Author URL.
Zhang X, Wakeling M, Ware J, Whiffin N (2020). Annotating high-impact 5’untranslated region variants with the UTRannotator.
Abstract:
Annotating high-impact 5’untranslated region variants with the UTRannotator
AbstractSummaryCurrent tools to annotate the predicted effect of genetic variants are heavily biased towards protein-coding sequence. Variants outside of these regions may have a large impact on protein expression and/or structure and can lead to disease, but this effect can be challenging to predict. Consequently, these variants are poorly annotated using standard tools. We have developed a plugin to the Ensembl Variant Effect Predictor, the UTRannotator, that annotates variants in 5’untranslated regions (5’UTR) that create or disrupt upstream open reading frames (uORFs). We investigate the utility of this tool using the ClinVar database, providing an annotation for 30.8% of all 5’UTR (likely) pathogenic variants, and highlighting 31 variants of uncertain significance as candidates for further follow-up. We will continue to update the UTR annotator as we gain new knowledge on the impact of variants in UTRs.Availability and implementationUTRannotator is freely available on Github: https://github.com/ImperialCardioGenetics/UTRannotatorSupplementary informationSupplementary data are available at bioRxiv.
Abstract.
Wakeling MN, Laver TW, Colclough K, Parish A, Ellard S, Baple EL (2020). Misannotation of multiple-nucleotide variants risks misdiagnosis.
Wellcome Open Research,
4, 145-145.
Abstract:
Misannotation of multiple-nucleotide variants risks misdiagnosis
Multiple Nucleotide Variants (MNVs) are miscalled by the most widely utilised next generation sequencing analysis (NGS) pipelines, presenting the potential for missing diagnoses. These variants, which should be treated as a single insertion-deletion mutation event, are commonly called as separate single nucleotide variants. This can result in misannotation, incorrect amino acid predictions and potentially false positive and false negative diagnostic results. Using simulated data and re-analysis of sequencing data from a diagnostic targeted gene panel, we demonstrate that the widely adopted pipeline, GATK best practices, results in miscalling of MNVs and that alternative tools can call these variants correctly. The adoption of calling methods that annotate MNVs correctly would present a solution for individual laboratories, however GATK best practices are the basis for important public resources such as the gnomAD database. We suggest integrating a solution into these guidelines would be the optimal approach.
Abstract.
Banerjee I, Senniappan S, Laver TW, Caswell R, Zenker M, Mohnike K, Cheetham T, Wakeling MN, Ismail D, Lennerz B, et al (2020). Refinement of the critical genomic region for congenital hyperinsulinism in the Chromosome 9p deletion syndrome.
Wellcome Open Research,
4, 149-149.
Abstract:
Refinement of the critical genomic region for congenital hyperinsulinism in the Chromosome 9p deletion syndrome
Background: Large contiguous gene deletions at the distal end of the short arm of chromosome 9 result in the complex multi-organ condition chromosome 9p deletion syndrome. a range of clinical features can result from these deletions with the most common being facial dysmorphisms and neurological impairment. Congenital hyperinsulinism is a rarely reported feature of the syndrome with the genetic mechanism for the dysregulated insulin secretion being unknown. Methods: We studied the clinical and genetic characteristics of 12 individuals with chromosome 9p deletions who had a history of neonatal hypoglycaemia. Using off-target reads generated from targeted next-generation sequencing of the genes known to cause hyperinsulinaemic hypoglycaemia (n=9), or microarray analysis (n=3), we mapped the minimal shared deleted region on chromosome 9 in this cohort. Targeted sequencing was performed in three patients to search for a recessive mutation unmasked by the deletion. Results: in 10/12 patients with hypoglycaemia, hyperinsulinism was confirmed biochemically. A range of extra-pancreatic features were also reported in these patients consistent with the diagnosis of the Chromosome 9p deletion syndrome. The minimal deleted region was mapped to 7.2 Mb, encompassing 38 protein-coding genes. In silico analysis of these genes highlighted SMARCA2 and RFX3 as potential candidates for the hypoglycaemia. Targeted sequencing performed on three of the patients did not identify a second disease-causing variant within the minimal deleted region. Conclusions: This study identifies 9p deletions as an important cause of hyperinsulinaemic hypoglycaemia and increases the number of cases reported with 9p deletions and hypoglycaemia to 15 making this a more common feature of the syndrome than previously appreciated. Whilst the precise genetic mechanism of the dysregulated insulin secretion could not be determined in these patients, mapping the deletion breakpoints highlighted potential candidate genes for hypoglycaemia within the deleted region.
Abstract.
Banerjee I, Senniappan S, Laver TW, Caswell R, Zenker M, Mohnike K, Cheetham T, Wakeling MN, Ismail D, Lennerz B, et al (2020). Refinement of the critical genomic region for congenital hyperinsulinism in the Chromosome 9p deletion syndrome.
Wellcome open research,
4Abstract:
Refinement of the critical genomic region for congenital hyperinsulinism in the Chromosome 9p deletion syndrome.
Background: Large contiguous gene deletions at the distal end of the short arm of chromosome 9 result in the complex multi-organ condition chromosome 9p deletion syndrome. a range of clinical features can result from these deletions with the most common being facial dysmorphisms and neurological impairment. Congenital hyperinsulinism is a rarely reported feature of the syndrome with the genetic mechanism for the dysregulated insulin secretion being unknown. Methods: We studied the clinical and genetic characteristics of 12 individuals with chromosome 9p deletions who had a history of neonatal hypoglycaemia. Using off-target reads generated from targeted next-generation sequencing of the genes known to cause hyperinsulinaemic hypoglycaemia (n=9), or microarray analysis (n=3), we mapped the minimal shared deleted region on chromosome 9 in this cohort. Targeted sequencing was performed in three patients to search for a recessive mutation unmasked by the deletion. Results: in 10/12 patients with hypoglycaemia, hyperinsulinism was confirmed biochemically. A range of extra-pancreatic features were also reported in these patients consistent with the diagnosis of the Chromosome 9p deletion syndrome. The minimal deleted region was mapped to 7.2 Mb, encompassing 38 protein-coding genes. In silico analysis of these genes highlighted SMARCA2 and RFX3 as potential candidates for the hypoglycaemia. Targeted sequencing performed on three of the patients did not identify a second disease-causing variant within the minimal deleted region. Conclusions: This study identifies 9p deletions as an important cause of hyperinsulinaemic hypoglycaemia and increases the number of cases reported with 9p deletions and hypoglycaemia to 15 making this a more common feature of the syndrome than previously appreciated. Whilst the precise genetic mechanism of the dysregulated insulin secretion could not be determined in these patients, mapping the deletion breakpoints highlighted potential candidate genes for hypoglycaemia within the deleted region.
Abstract.
De Franco E, Lytrivi M, Ibrahim H, Montaser H, Wakeling M, Fantuzzi F, Patel K, Demarez C, Cai Y, Igoillo-Esteve M, et al (2020). YIPF5 mutations cause neonatal diabetes and microcephaly through endoplasmic reticulum stress. Journal of Clinical Investigation, 130
Rawlins LE, Jones H, Wenger O, Aye M, Fasham J, Harlalka GV, Chioza BA, Miron A, Ellard S, Wakeling M, et al (2019). An Amish founder variant consolidates disruption of CEP55 as a cause of hydranencephaly and renal dysplasia.
Eur J Hum Genet,
27(4), 657-662.
Abstract:
An Amish founder variant consolidates disruption of CEP55 as a cause of hydranencephaly and renal dysplasia.
The centrosomal protein 55 kDa (CEP55 (OMIM 610000)) plays a fundamental role in cell cycle regulation and cytokinesis. However, the precise role of CEP55 in human embryonic growth and development is yet to be fully defined. Here we identified a novel homozygous founder frameshift variant in CEP55, present at low frequency in the Amish community, in two siblings presenting with a lethal foetal disorder. The features of the condition are reminiscent of a Meckel-like syndrome comprising of Potter sequence, hydranencephaly, and cystic dysplastic kidneys. These findings, considered alongside two recent studies of single families reporting loss of function candidate variants in CEP55, confirm disruption of CEP55 function as a cause of this clinical spectrum and enable us to delineate the cardinal clinical features of this disorder, providing important new insights into early human development.
Abstract.
Author URL.
Wakeling MN, Laver TW, Wright CF, De Franco E, Stals KL, Patch A-M, Hattersley AT, Flanagan SE, Ellard S, DDD Study, et al (2019). Correction: Homozygosity mapping provides supporting evidence of pathogenicity in recessive Mendelian disease.
Genet Med,
21(3).
Abstract:
Correction: Homozygosity mapping provides supporting evidence of pathogenicity in recessive Mendelian disease.
The original version of this Article contained an error in the top left of Figure 2: the number 1 on the y-axis had been changed to 0 during the typesetting process. This has now been corrected in both the PDF and HTML versions of the Article.
Abstract.
Author URL.
Wakeling MN, Laver TW, Wright CF, De Franco E, Stals KL, Patch A-M, Hattersley AT, Flanagan SE, Ellard S, DDD Study, et al (2019). Homozygosity mapping provides supporting evidence of pathogenicity in recessive Mendelian disease.
Genet Med,
21(4), 982-986.
Abstract:
Homozygosity mapping provides supporting evidence of pathogenicity in recessive Mendelian disease.
PURPOSE: One of the greatest challenges currently facing those studying Mendelian disease is identifying the pathogenic variant from the long list produced by a next-generation sequencing test. We investigate the predictive ability of homozygosity mapping for identifying the regions likely to contain the causative variant. METHODS: We use 179 homozygous pathogenic variants from three independent cohorts to investigate the predictive power of homozygosity mapping. RESULTS: We demonstrate that homozygous pathogenic variants in our cohorts are disproportionately likely to be found within one of the largest regions of homozygosity: 80% of pathogenic variants are found in a homozygous region that is in the ten largest regions in a sample. The maximal predictive power is achieved in patients with 3 Mb from a telomere; this gives an area under the curve (AUC) of 0.735 and results in 92% of the causative variants being in one of the ten largest homozygous regions. CONCLUSION: This predictive power can be used to prioritize the list of candidate variants in gene discovery studies. When classifying a homozygous variant the size and rank of the region of homozygosity in which the candidate variant is located can also be considered as supporting evidence for pathogenicity.
Abstract.
Author URL.
Wakeling MN, Laver TW, Colclough K, Parish A, Ellard S, Baple EL (2019). Misannotation of multiple-nucleotide variants risks misdiagnosis.
Wellcome Open Research,
4, 145-145.
Abstract:
Misannotation of multiple-nucleotide variants risks misdiagnosis
Multiple Nucleotide Variants (MNVs) are miscalled by the most widely utilised next generation sequencing analysis (NGS) pipelines, presenting the potential for missing diagnoses that would previously have been made by standard Sanger (dideoxy) sequencing. These variants, which should be treated as a single insertion-deletion mutation event, are commonly called as separate single nucleotide variants. This can result in misannotation, incorrect amino acid predictions and potentially false positive and false negative diagnostic results. This risk will be increased as confirmatory Sanger sequencing of Single Nucleotide variants (SNVs) ceases to be standard practice. Using simulated data and re-analysis of sequencing data from a diagnostic targeted gene panel, we demonstrate that the widely adopted pipeline, GATK best practices, results in miscalling of MNVs and that alternative tools can call these variants correctly. The adoption of calling methods that annotate MNVs correctly would present a solution for individual laboratories, however GATK best practices are the basis for important public resources such as the gnomAD database. We suggest integrating a solution into these guidelines would be the optimal approach.
Abstract.
Van Bergen NJ, Guo Y, Rankin J, Paczia N, Becker-Kettern J, Kremer LS, Pyle A, Conrotte J-F, Ellaway C, Procopis P, et al (2019). NAD(P)HX dehydratase (NAXD) deficiency: a novel neurodegenerative disorder exacerbated by febrile illnesses.
Brain,
142(1), 50-58.
Abstract:
NAD(P)HX dehydratase (NAXD) deficiency: a novel neurodegenerative disorder exacerbated by febrile illnesses.
Physical stress, including high temperatures, may damage the central metabolic nicotinamide nucleotide cofactors [NAD(P)H], generating toxic derivatives [NAD(P)HX]. The highly conserved enzyme NAD(P)HX dehydratase (NAXD) is essential for intracellular repair of NAD(P)HX. Here we present a series of infants and children who suffered episodes of febrile illness-induced neurodegeneration or cardiac failure and early death. Whole-exome or whole-genome sequencing identified recessive NAXD variants in each case. Variants were predicted to be potentially deleterious through in silico analysis. Reverse-transcription PCR confirmed altered splicing in one case. Subject fibroblasts showed highly elevated concentrations of the damaged cofactors S-NADHX, R-NADHX and cyclic NADHX. NADHX accumulation was abrogated by lentiviral transduction of subject cells with wild-type NAXD. Subject fibroblasts and muscle biopsies showed impaired mitochondrial function, higher sensitivity to metabolic stress in media containing galactose and azide, but not glucose, and decreased mitochondrial reactive oxygen species production. Recombinant NAXD protein harbouring two missense variants leading to the amino acid changes p.(Gly63Ser) and p.(Arg608Cys) were thermolabile and showed a decrease in Vmax and increase in KM for the ATP-dependent NADHX dehydratase activity. This is the first study to identify pathogenic variants in NAXD and to link deficient NADHX repair with mitochondrial dysfunction. The results show that NAXD deficiency can be classified as a metabolite repair disorder in which accumulation of damaged metabolites likely triggers devastating effects in tissues such as the brain and the heart, eventually leading to early childhood death.
Abstract.
Author URL.
Banerjee I, Senniappan S, Laver TW, Caswell R, Zenker M, Mohnike K, Cheetham T, Wakeling MN, Ismail D, Lennerz B, et al (2019). Refinement of the critical genomic region for hypoglycaemia in the Chromosome 9p deletion syndrome.
Wellcome Open Research,
4, 149-149.
Abstract:
Refinement of the critical genomic region for hypoglycaemia in the Chromosome 9p deletion syndrome
Background: Large contiguous gene deletions at the distal end of the short arm of chromosome 9 result in the complex multi-organ condition chromosome 9p deletion syndrome. a range of clinical features can result from these deletions with the most common being facial dysmorphisms and neurological impairment. Congenital hyperinsulinism is a rarely reported feature of the syndrome with the genetic mechanism for the dysregulated insulin secretion being unknown. Methods: We studied the clinical and genetic characteristics of 12 individuals with chromosome 9p deletions who had a history of neonatal hypoglycaemia. Using off-target reads generated from targeted next-generation sequencing of the genes known to cause hyperinsulinaemic hypoglycaemia (n=9), or microarray analysis (n=3), we mapped the minimal shared deleted region on chromosome 9 in this cohort. Targeted sequencing was performed in three patients to search for a recessive mutation unmasked by the deletion. Results: in 10/12 patients with hypoglycaemia, hyperinsulinism was confirmed biochemically. A range of extra-pancreatic features were also reported in these patients consistent with the diagnosis of the Chromosome 9p deletion syndrome. The minimal deleted region was mapped to 7.2 Mb, encompassing 38 protein-coding genes. In silico analysis of these genes highlighted SMARCA2 and RFX3 as potential candidates for the hypoglycaemia. Targeted sequencing performed on three of the patients did not identify a second disease-causing variant within the minimal deleted region. Conclusions: This study identifies 9p deletions as an important cause of hyperinsulinaemic hypoglycaemia and increases the number of cases reported with 9p deletions and hypoglycaemia to 15 making this a more common feature of the syndrome than previously appreciated. Whilst the precise genetic mechanism of the dysregulated insulin secretion could not be determined in these patients, mapping the deletion breakpoints highlighted potential candidate genes for hypoglycaemia within the deleted region.
Abstract.
Laver TW, De Franco E, Johnson MB, Patel K, Ellard S, Weedon MN, Flanagan SE, Wakeling MN (2019). SavvyCNV: genome-wide CNV calling from off-target reads.
Abstract:
SavvyCNV: genome-wide CNV calling from off-target reads
AbstractIdentifying copy number variants (CNVS) can provide diagnoses to patients and provide important biological insights into human health and disease. Current exome and targeted sequencing approaches cannot detect clinically and biologically-relevant CNVs outside their target area. We present SavvyCNV, a tool which uses off-target read data to call CNVs genome-wide. Up to 70% of sequencing reads from exome and targeted sequencing fall outside the targeted regions - SavvyCNV exploits this ‘free data’.We benchmarked SavvyCNV using truth sets generated from genome sequencing data and Multiplex Ligation-dependent Probe Amplification assays. SavvyCNV called CNVs with high precision and recall, outperforming five state-of-the-art CNV callers at calling CNVs genome-wide using off-target or on-target reads from targeted panel and exome sequencing. Furthermore SavvyCNV was able to call previously undetected clinically-relevant CNVs from targeted panel data highlighting the utility of this tool within the diagnostic setting. SavvyCNV is freely available.
Abstract.
Johnson MBJ, De Franco E, Atma W Greeley S, Letourneau LR, Gillespie K, Wakeling MN, Ellard S, Flanagan SE, Patel K, Hattersley AT, et al (2019). Trisomy 21 is a Cause of Permanent Neonatal Diabetes that is Autoimmune but not HLA Associated. Diabetes
Yaghootkar H, Abbasi F, Ghaemi N, Rabbani A, Wakeling MN, Eshraghi P, Enayati S, Vakili S, Heidari S, Patel K, et al (2019). Type 1 diabetes genetic risk score discriminates between monogenic and Type 1 diabetes in children diagnosed at the age of <5 years in the Iranian population.
Diabet Med,
36(12), 1694-1702.
Abstract:
Type 1 diabetes genetic risk score discriminates between monogenic and Type 1 diabetes in children diagnosed at the age of <5 years in the Iranian population.
AIM: to examine the extent to which discriminatory testing using antibodies and Type 1 diabetes genetic risk score, validated in European populations, is applicable in a non-European population. METHODS: We recruited 127 unrelated children with diabetes diagnosed between 9 months and 5 years from two centres in Iran. All children underwent targeted next-generation sequencing of 35 monogenic diabetes genes. We measured three islet autoantibodies (islet antigen 2, glutamic acid decarboxylase and zinc transporter 8) and generated a Type 1 diabetes genetic risk score in all children. RESULTS: We identified six children with monogenic diabetes, including four novel mutations: homozygous mutations in WFS1 (n=3), SLC19A2 and SLC29A3, and a heterozygous mutation in GCK. All clinical features were similar in children with monogenic diabetes (n=6) and in the rest of the cohort (n=121). The Type 1 diabetes genetic risk score discriminated children with monogenic from Type 1 diabetes [area under the receiver-operating characteristic curve 0.90 (95% CI 0.83-0.97)]. All children with monogenic diabetes were autoantibody-negative. In children with no mutation, 59 were positive to glutamic acid decarboxylase, 39 to islet antigen 2 and 31 to zinc transporter 8. Measuring zinc transporter 8 increased the number of autoantibody-positive individuals by eight. CONCLUSIONS: the present study provides the first evidence that Type 1 diabetes genetic risk score can be used to distinguish monogenic from Type 1 diabetes in an Iranian population with a large number of consanguineous unions. This test can be used to identify children with a higher probability of having monogenic diabetes who could then undergo genetic testing. Identification of these individuals would reduce the cost of treatment and improve the management of their clinical course.
Abstract.
Author URL.
Iacovazzo D, Flanagan S, Walker E, Quezado R, Antonio de Sousa F, Caswell R, Johnson MBJ, Wakeling M, Brandle M, Guo M, et al (2018). A MAFA missense mutation causes familial insulinomatosis and diabetes mellitus. Proceedings of the National Academy of Sciences
Laver TW, Wakeling MN, Hong Yeow Hua J, Houghton JAL, Hussain K, Ellard S, Flanagan SE (2018). Comprehensive screening shows that mutations in the known syndromic genes are rare in individuals presenting with hyperinsulinaemic hypoglycaemia.
Abstract:
Comprehensive screening shows that mutations in the known syndromic genes are rare in individuals presenting with hyperinsulinaemic hypoglycaemia
AbstractObjectiveHyperinsulinaemic hypoglycaemia (HH) can occur in isolation or more rarely feature as part of a syndrome. Screening for mutations in the ‘syndromic HH’ genes is guided by phenotype with genetic testing used to confirm the clinical diagnosis. As HH can be the presenting feature of a syndrome it is possible that mutations will be missed as these genes are not routinely screened in all newly diagnosed individuals. We investigated the frequency of pathogenic variants in syndromic genes in individuals with HH who had not been clinically diagnosed with a syndromic disorder at referral for genetic testing.DesignWe used genome sequencing data to assess the prevalence of mutations in syndromic HH genes in an international cohort of patients with HH of unknown genetic cause.MethodsWe undertook genome sequencing in 82 individuals with HH without a clinical diagnosis of a known syndrome at referral for genetic testing. Within this cohort we searched for the genetic aetiologies causing 20 different syndromes where HH had been reported as a feature.ResultsWe identified a pathogenicKMT2Dvariant in a patient with HH diagnosed at birth, confirming a genetic diagnosis of Kabuki syndrome. Clinical data received following the identification of the mutation highlighted additional features consistent with the genetic diagnosis. Pathogenic variants were not identified in the remainder of the cohort.ConclusionsPathogenic variants in the syndromic HH genes are rare but should be considered in newly diagnosed individuals as HH may be the presenting feature.
Abstract.
Stals KL, Wakeling M, Baptista J, Caswell R, Parrish A, Rankin J, Tysoe C, Jones G, Gunning AC, Lango Allen H, et al (2018). Diagnosis of lethal or prenatal-onset autosomal recessive disorders by parental exome sequencing.
Prenat Diagn,
38(1), 33-43.
Abstract:
Diagnosis of lethal or prenatal-onset autosomal recessive disorders by parental exome sequencing.
OBJECTIVE: Rare genetic disorders resulting in prenatal or neonatal death are genetically heterogeneous, but testing is often limited by the availability of fetal DNA, leaving couples without a potential prenatal test for future pregnancies. We describe our novel strategy of exome sequencing parental DNA samples to diagnose recessive monogenic disorders in an audit of the first 50 couples referred. METHOD: Exome sequencing was carried out in a consecutive series of 50 couples who had 1 or more pregnancies affected with a lethal or prenatal-onset disorder. In all cases, there was insufficient DNA for exome sequencing of the affected fetus. Heterozygous rare variants (MAF
Abstract.
Author URL.
Ruark E, Holt E, Renwick A, Münz M, Wakeling M, Ellard S, Mahamdallie S, Yost S, Rahman N (2018). ICR142 Benchmarker: evaluating, optimising and benchmarking variant calling performance using the ICR142 NGS validation series.
Wellcome Open Res,
3Abstract:
ICR142 Benchmarker: evaluating, optimising and benchmarking variant calling performance using the ICR142 NGS validation series.
Evaluating, optimising and benchmarking of next generation sequencing (NGS) variant calling performance are essential requirements for clinical, commercial and academic NGS pipelines. Such assessments should be performed in a consistent, transparent and reproducible fashion, using independently, orthogonally generated data. Here we present ICR142 Benchmarker, a tool to generate outputs for assessing germline base substitution and indel calling performance using the ICR142 NGS validation series, a dataset of Illumina platform-based exome sequence data from 142 samples together with Sanger sequence data at 704 sites. ICR142 Benchmarker provides summary and detailed information on the sensitivity, specificity and false detection rates of variant callers. ICR142 Benchmarker also automatically generates a single page report highlighting key performance metrics and how performance compares to widely-used open-source tools. We used ICR142 Benchmarker with VCF files outputted by GATK, OpEx and DeepVariant to create a benchmark for variant calling performance. This evaluation revealed pipeline-specific differences and shared challenges in variant calling, for example in detecting indels in short repeating sequence motifs. We next used ICR142 Benchmarker to perform regression testing with DeepVariant versions 0.5.2 and 0.6.1. This showed that v0.6.1 improves variant calling performance, but there was evidence of minor changes in indel calling behaviour that may benefit from attention. The data also allowed us to evaluate filters to optimise DeepVariant calling, and we recommend using 30 as the QUAL threshold for base substitution calls when using DeepVariant v0.6.1. Finally, we used ICR142 Benchmarker with VCF files from two commercial variant calling providers to facilitate optimisation of their in-house pipelines and to provide transparent benchmarking of their performance. ICR142 Benchmarker consistently and transparently analyses variant calling performance based on the ICR142 NGS validation series, using the standard VCF input and outputting informative metrics to enable user understanding of pipeline performance. ICR142 Benchmarker is freely available at https://github.com/RahmanTeamDevelopment/ICR142_Benchmarker/releases.
Abstract.
Author URL.
Ruark E, Holt E, Renwick A, Münz M, Wakeling M, Ellard S, Mahamdallie S, Yost S, Rahman N (2018). ICR142 Benchmarker: evaluating, optimising and benchmarking variant calling using the ICR142 NGS validation series.
Wellcome Open Research,
3, 108-108.
Abstract:
ICR142 Benchmarker: evaluating, optimising and benchmarking variant calling using the ICR142 NGS validation series
Evaluating, optimising and benchmarking of next generation sequencing (NGS) variant calling performance are essential requirements for clinical, commercial and academic NGS pipelines. Such assessments should be performed in a consistent, transparent and reproducible fashion, using independently, orthogonally generated data. Here we present ICR142 Benchmarker, a tool to generate outputs for assessing variant calling performance using the ICR142 NGS validation series, a dataset of exome sequence data from 142 samples together with Sanger sequence data at 704 sites. ICR142 Benchmarker provides summary and detailed information on the sensitivity, specificity and false detection rates of variant callers. ICR142 Benchmarker also automatically generates a single page report highlighting key performance metrics and how performance compares to widely-used open-source tools. We used ICR142 Benchmarker with VCF files outputted by GATK, OpEx and DeepVariant to create a benchmark for variant calling performance. This evaluation revealed pipeline-specific differences and shared challenges in variant calling, for example in detecting indels in short repeating sequence motifs. We next used ICR142 Benchmarker to perform regression testing with versions 0.5.2 and 0.6.1 of DeepVariant. This showed that v0.6.1 improves variant calling performance, but there was evidence of some minor changes in indel calling behaviour that may benefit from attention in future updates. The data also allowed us to evaluate filters to optimise DeepVariant calling, and we recommend using 30 as the QUAL threshold for base substitution calls when using DeepVariant v0.6.1. Finally, we used ICR142 Benchmarker with VCF files from two commercial variant calling providers to facilitate optimisation of their in-house pipelines and to provide transparent benchmarking of their performance. ICR142 Benchmarker consistently and transparently analyses variant calling performance based on the ICR142 NGS validation series, using the standard VCF input and outputting informative metrics to enable user understanding of pipeline performance. ICR142 Benchmarker is freely available at https://github.com/RahmanTeamDevelopment/ICR142_Benchmarker/releases.
Abstract.
De Franco E, Lytrivi M, Patel K, Igoillo-Esteve M, Wakeling M, Haliloglu B, Unal E, Godbole T, Yildiz M, Ellard S, et al (2018). Mutations in YIPF5 are a novel cause of neonatal diabetes, highlighting the critical role of endoplasmic reticulum-to-Golgi trafficking in human beta cell survival.
DIABETOLOGIA,
61, S106-S106.
Author URL.
Low KJ, Stals K, Caswell R, Wakeling M, Clayton-Smith J, Donaldson A, Foulds N, Norman A, Splitt M, Urankar K, et al (2018). Phenotype of CNTNAP1: a study of patients demonstrating a specific severe congenital hypomyelinating neuropathy with survival beyond infancy.
Eur J Hum Genet,
26(6), 796-807.
Abstract:
Phenotype of CNTNAP1: a study of patients demonstrating a specific severe congenital hypomyelinating neuropathy with survival beyond infancy.
CHN is genetically heterogeneous and its genetic basis is difficult to determine on features alone. CNTNAP1 encodes CASPR, integral in the paranodal junction high molecular mass complex. Nineteen individuals with biallelic variants have been described in association with severe congenital hypomyelinating neuropathy, respiratory compromise, profound intellectual disability and death within the first year. We report 7 additional patients ascertained through exome sequencing. We identified 9 novel CNTNAP1 variants in 6 families: three missense variants, four nonsense variants, one frameshift variant and one splice site variant. Significant polyhydramnios occurred in 6/7 pregnancies. Severe respiratory compromise was seen in 6/7 (tracheostomy in 5). A complex neurological phenotype was seen in all patients who had marked brain hypomyelination/demyelination and profound developmental delay. Additional neurological findings included cranial nerve compromise: orobulbar dysfunction in 5/7, facial nerve weakness in 4/7 and vocal cord paresis in 5/7. Dystonia occurred in 2/7 patients and limb contractures in 5/7. All had severe gastroesophageal reflux, and a gastrostomy was required in 5/7. In contrast to most previous reports, only one patient died in the first year of life. Protein modelling was performed for all detected CNTNAP1 variants. We propose a genotype-phenotype correlation, whereby hypomorphic missense variants partially ameliorate the phenotype, prolonging survival. This study suggests that biallelic variants in CNTNAP1 cause a distinct recognisable syndrome, which is not caused by other genes associated with CHN. Neonates presenting with this phenotype will benefit from early genetic definition to inform clinical management and enable essential genetic counselling for their families.
Abstract.
Author URL.
Laver T, Wakeling M, Knox O, De-Franco E, Flanagan S, Colclough K, Ellard S, Hattersley A, Weedon M, Patel K, et al (2018). Redefining the pathogenicity of Maturity Onset Diabetes of the Young (MODY) genes: BLK, PAX4 and KLF11 do not cause MODY.
DIABETIC MEDICINE,
35, 10-10.
Author URL.
Iacovazzo D, Flanagan SE, Walker E, Caswell R, Brandle M, Johnson M, Wakeling M, Guo M, Dang MN, Gabrovska P, et al (2016). A missense mutation in the islet-enriched transcription factor MAFA leads to familial insulinomatosis and diabetes. Endocrine Abstracts
Wakeling M, Eyre J, Hughes S, Roulstone I (2014). Assimilation of vertical motion from simulated cloudy satellite imagery in an idealized single column model.
Quarterly Journal of the Royal Meteorological SocietyAbstract:
Assimilation of vertical motion from simulated cloudy satellite imagery in an idealized single column model
Satellite infrared sounders are invaluable tools for making observations of the structure of the atmosphere. They provide much of the observational data used to initialize atmospheric models, especially in regions that do not have extensive surface-based observing systems, such as oceans. However, information is lacking in the presence of cloud, as the cloud layer is opaque to infrared radiation. This means that where information is most desired (such as in a developing storm) it is often in the shortest supply. In order to explore the mathematics of assimilating data from cloudy radiances, a study has been performed using an idealized single-column atmospheric model. The model simulates cloud development in an atmosphere with vertical motion, allowing the characteristics of a 2D-Var data assimilation system using a single simulated infrared satellite observation taken multiple times to be studied. The strongly nonlinear nature of cloud formation poses a challenge for variational methods. The adjoint method produces an accurate gradient for the cost function and minimization is achieved using preconditioned conjugate gradients. The conditioning is poor and varies strongly with the atmospheric variables and the cost function has multiple minima, but acceptable results are achieved. The assimilation system is provided with a prior forecast simulated by adding random correlated Gaussian error to the truth. Assimilating observations comparable to those available from current geostationary satellites allows vertical motion to be retrieved with an error of less than a centimetre per second in most conditions. Moreover, evaluating the second derivative of the cost function at the minimum provides an estimate of the uncertainty in the retrieval. This allows atmospheric states that do not provide sufficient information for retrieval of vertical motion to be detected (such as a cloudless atmosphere or a non-moving opaque cloud layer in the upper troposphere). Retrieval is most accurate with upwards motion. © 2014 Royal Meteorological Society.
Abstract.
Smith RN, Aleksic J, Butano D, Carr A, Contrino S, Hu F, Lyne M, Lyne R, Kalderimis A, Rutherford K, et al (2012). InterMine: a flexible data warehouse system for the integration and analysis of heterogeneous biological data.
Bioinformatics,
28(23), 3163-3165.
Abstract:
InterMine: a flexible data warehouse system for the integration and analysis of heterogeneous biological data.
SUMMARY: InterMine is an open-source data warehouse system that facilitates the building of databases with complex data integration requirements and a need for a fast customizable query facility. Using InterMine, large biological databases can be created from a range of heterogeneous data sources, and the extensible data model allows for easy integration of new data types. The analysis tools include a flexible query builder, genomic region search and a library of 'widgets' performing various statistical analyses. The results can be exported in many commonly used formats. InterMine is a fully extensible framework where developers can add new tools and functionality. Additionally, there is a comprehensive set of web services, for which client libraries are provided in five commonly used programming languages. AVAILABILITY: Freely available from http://www.intermine.org under the LGPL license. CONTACT: g.micklem@gen.cam.ac.uk SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Abstract.
Author URL.
Lyne R, Smith R, Rutherford K, Wakeling M, Varley A, Guillier F, Janssens H, Ji W, Mclaren P, North P, et al (2007). FlyMine: an integrated database for Drosophila and Anopheles genomics.
Genome Biol,
8(7).
Abstract:
FlyMine: an integrated database for Drosophila and Anopheles genomics.
FlyMine is a data warehouse that addresses one of the important challenges of modern biology: how to integrate and make use of the diversity and volume of current biological data. Its main focus is genomic and proteomics data for Drosophila and other insects. It provides web access to integrated data at a number of different levels, from simple browsing to construction of complex queries, which can be executed on either single items or lists.
Abstract.
Author URL.
Janssens H, Lyne R, Smith R, Guillier F, Ji W, McLaren P, Riley T, Reisinger F, Rutherford K, Wakeling M, et al (2006). Flymine:: an integrated database of <i>Drosophila</i> and anopheles genomics.
JOURNAL OF NEUROGENETICS,
20(3-4), 138-139.
Author URL.