Journal articles
Bailey S, Green H, Merriel S, Oram R, Thirlwell C, Ruth K, Tyrrell J, Weedon M (In Press). Applying a genetic risk score for prostate cancer to men with lower urinary tract symptoms in primary care to predict prostate cancer diagnosis: a cohort study in the UK Biobank. British Journal of Cancer
Wright C, Tuke M, Frayling T, Weedon M, Murray A, Tyrrell J, Ruth K, Beaumont R, Wood A (In Press). Large copy number variants in UK Biobank caused by clonal haematopoiesis may confound penetrance estimates. American Journal of Human Genetics
Weedon M, Jackson L, Harrison J, Ruth K, Tyrrell J, Hattersley A, Wright C (In Press). Use of SNP chips to detect rare pathogenic variants: retrospective, population based diagnostic evaluation. BMJ: British Medical Journal
Harlow CE, Patel VV, Waterworth DM, Wood AR, Beaumont RN, Ruth KS, Tyrrell J, Oguro-Ando A, Chu AY, Frayling TM, et al (2023). Genetically proxied therapeutic prolyl-hydroxylase inhibition and cardiovascular risk.
Hum Mol Genet,
32(3), 496-505.
Abstract:
Genetically proxied therapeutic prolyl-hydroxylase inhibition and cardiovascular risk.
Prolyl hydroxylase (PHD) inhibitors are in clinical development for anaemia in chronic kidney disease. Epidemiological studies have reported conflicting results regarding safety of long-term therapeutic haemoglobin (Hgb) rises through PHD inhibition on risk of cardiovascular disease. Genetic variation in genes encoding PHDs can be used as partial proxies to investigate the potential effects of long-term Hgb rises. We used Mendelian randomization to investigate the effect of long-term Hgb level rises through genetically proxied PHD inhibition on coronary artery disease (CAD: 60 801 cases; 123 504 controls), myocardial infarction (MI: 42 561 cases; 123 504 controls) or stroke (40 585 cases; 406 111 controls). To further characterize long-term effects of Hgb level rises, we performed a phenome-wide association study (PheWAS) in up to 451 099 UK Biobank individuals. Genetically proxied therapeutic PHD inhibition, equivalent to a 1.00 g/dl increase in Hgb levels, was not associated (at P
Abstract.
Author URL.
Jackson L, Weedon MN, Green HD, Mallabar-Rimmer B, Harrison JW, Wood AR, Ruth KS, Tyrrell J, Wright CF (2023). Influence of family history on penetrance of hereditary cancers in a population setting. eClinicalMedicine, 64, 102159-102159.
Ruth KS, Beaumont RN, Locke JM, Tyrrell J, Crandall CJ, Hawkes G, Frayling TM, Prague JK, Patel KA, Wood AR, et al (2023). Insights into the genetics of menopausal vasomotor symptoms: genome-wide analyses of routinely-collected primary care health records.
BMC Med Genomics,
16(1).
Abstract:
Insights into the genetics of menopausal vasomotor symptoms: genome-wide analyses of routinely-collected primary care health records.
BACKGROUND: Vasomotor symptoms (VMS) can often significantly impact women's quality of life at menopause. In vivo studies have shown that increased neurokinin B (NKB) / neurokinin 3 receptor (NK3R) signalling contributes to VMS, with previous genetic studies implicating the TACR3 gene locus that encodes NK3R. Large-scale genomic analyses offer the possibility of biological insights but few such studies have collected data on VMS, while proxy phenotypes such as hormone replacement therapy (HRT) use are likely to be affected by changes in clinical practice. We investigated the genetic basis of VMS by analysing routinely-collected health records. METHODS: We performed a GWAS of VMS derived from linked primary-care records and cross-sectional self-reported HRT use in up to 153,152 women from UK Biobank, a population-based cohort. In a subset of this cohort (n = 39,356), we analysed exome-sequencing data to test the association with VMS of rare deleterious genetic variants. Finally, we used Mendelian randomisation analysis to investigate the reasons for HRT use over time. RESULTS: Our GWAS of health-records derived VMS identified a genetic signal near TACR3 associated with a lower risk of VMS (OR=0.76 (95% CI 0.72,0.80) per a allele, P=3.7x10-27), which was consistent with previous studies, validating this approach. Conditional analyses demonstrated independence of genetic signals for puberty timing and VMS at the TACR3 locus, including a rare variant predicted to reduce functional NK3R levels that was associated with later menarche (P = 5 × 10-9) but showed no association with VMS (P = 0.6). Younger menopause age was causally-associated with greater HRT use before 2002 but not after. CONCLUSIONS: We provide support for TACR3 in the genetic basis of VMS but unexpectedly find that rare genomic variants predicted to lower NK3R levels did not modify VMS, despite the proven efficacy of NK3R antagonists. Using genomics we demonstrate changes in genetic associations with HRT use over time, arising from a change in clinical practice since the early 2000s, which is likely to reflect a switch from preventing post-menopausal complications in women with earlier menopause to primarily treating VMS. Our study demonstrates that integrating routinely-collected primary care health records and genomic data offers great potential for exploring the genetic basis of symptoms.
Abstract.
Author URL.
Steventon JJ, Lancaster TM, Baker ES, Bracher-Smith M, Escott-Price V, Ruth KS, Davies W, Caseras X, Murphy K (2023). Menopause age, reproductive span and hormone therapy duration predict the volume of medial temporal lobe brain structures in postmenopausal women.
Psychoneuroendocrinology,
158Abstract:
Menopause age, reproductive span and hormone therapy duration predict the volume of medial temporal lobe brain structures in postmenopausal women.
Medial temporal lobe (MTL) atrophy is correlated with risk and severity of Alzheimer disease (AD) pathology and cognitive decline. Increasing evidence suggest that oestrogens affect the aging of MTL structures. Here we investigate the relationship between reproductive hormone exposure, polygenic scores for AD risk and oestradiol concentration, MTL anatomy and cognitive performance in postmenopausal women. To this end, we used data from 10,924 female participants in the UK Biobank from whom brain MRI and genetic data were available. We fitted linear regression models to test whether the volume of structures comprising the MTL were predicted by a) timing related to menopause, b) the use and timing of hormone replacement therapy (HRT) and c) polygenic scores for AD risk and oestradiol concentration. Results showed that longer use of HRT was associated with larger parahippocampal volumes (2.53 mm3/year, p = 0.042). A later age of natural menopause, and a longer reproductive span, was associated with larger hippocampal (6.08 and 5.72 mm3/year, p = 0.0006 and 0.0005), parahippocampal (4.17 mm3 and 4.19 mm3/year, p = 0.00006 and 0.00001), amygdala (2.10 and 2.22 mm3/year, p = 0.028 and 0.01) and perirhinal cortical (2.56 and 2.95 mm3/year, p = 0.028 and 0.008) volumes. Superior prospective memory performance was associated with later age at natural menopause, and a longer reproductive span (ß = 0.05 and 0.05 respectively, p = 0.019 and 0.019). Polygenic scores for AD risk and for oestradiol concentration were not associated with MTL volume and did not interact with menopause-related factors to affect MTL structure. Our results suggest that HRT use did not have any detrimental effects on cognition or brain structure, whilst greater exposure to reproductive hormones across time is associated both with slightly larger volumes of specific MTL structures and marginally superior memory performance, independent of genetic risk for AD and genetic predisposition for higher oestradiol levels. However, the clinical utility of maintenance of oestrogens post-menopause for brain health and protection against cognitive decline is curtailed by the small effect sizes observed.
Abstract.
Author URL.
Shekari S, Stankovic S, Gardner EJ, Hawkes G, Kentistou KA, Beaumont RN, Mörseburg A, Wood AR, Prague JK, Mishra GD, et al (2023). Penetrance of pathogenic genetic variants associated with premature ovarian insufficiency.
Nat Med,
29(7), 1692-1699.
Abstract:
Penetrance of pathogenic genetic variants associated with premature ovarian insufficiency.
Premature ovarian insufficiency (POI) affects 1% of women and is a leading cause of infertility. It is often considered to be a monogenic disorder, with pathogenic variants in ~100 genes described in the literature. We sought to systematically evaluate the penetrance of variants in these genes using exome sequence data in 104,733 women from the UK Biobank, 2,231 (1.14%) of whom reported at natural menopause under the age of 40 years. We found limited evidence to support any previously reported autosomal dominant effect. For nearly all heterozygous effects on previously reported POI genes, we ruled out even modest penetrance, with 99.9% (13,699 out of 13,708) of all protein-truncating variants found in reproductively healthy women. We found evidence of haploinsufficiency effects in several genes, including TWNK (1.54 years earlier menopause, P = 1.59 × 10-6) and SOHLH2 (3.48 years earlier menopause, P = 1.03 × 10-4). Collectively, our results suggest that, for the vast majority of women, POI is not caused by autosomal dominant variants either in genes previously reported or currently evaluated in clinical diagnostic panels. Our findings, plus previous studies, suggest that most POI cases are likely oligogenic or polygenic in nature, which has important implications for future clinical genetic studies, and genetic counseling for families affected by POI.
Abstract.
Author URL.
Green HD, Merriel SWD, Oram RA, Ruth KS, Tyrrell J, Jones SE, Thirlwell C, Weedon MN, Bailey SER (2023). Response to: Genetic risk scores may compound rather than solve the issue of prostate cancer overdiagnosis (BJC-LT3342090).
Br J Cancer,
128(4), 487-488.
Author URL.
Zhao Y, Gardner EJ, Tuke MA, Zhang H, Pietzner M, Koprulu M, Jia RY, Ruth KS, Wood AR, Beaumont RN, et al (2022). Detection and characterization of male sex chromosome abnormalities in the UK Biobank study.
Genet Med,
24(9), 1909-1919.
Abstract:
Detection and characterization of male sex chromosome abnormalities in the UK Biobank study.
PURPOSE: the study aimed to systematically ascertain male sex chromosome abnormalities, 47,XXY (Klinefelter syndrome [KS]) and 47,XYY, and characterize their risks of adverse health outcomes. METHODS: We analyzed genotyping array or exome sequence data in 207,067 men of European ancestry aged 40 to 70 years from the UK Biobank and related these to extensive routine health record data. RESULTS: Only 49 of 213 (23%) of men whom we identified with KS and only 1 of 143 (0.7%) with 47,XYY had a diagnosis of abnormal karyotype on their medical records or self-report. We observed expected associations for KS with reproductive dysfunction (late puberty: risk ratio [RR] = 2.7; childlessness: RR = 4.2; testosterone concentration: RR = -3.8 nmol/L, all P
Abstract.
Author URL.
Hayes BL, Robinson T, Kar S, Ruth KS, Tsilidis KK, Frayling T, Murray A, Martin RM, Lawlor DA, Richmond RC, et al (2022). Do sex hormones confound or mediate the effect of chronotype on breast and prostate cancer? a Mendelian randomization study.
PLoS Genet,
18(1).
Abstract:
Do sex hormones confound or mediate the effect of chronotype on breast and prostate cancer? a Mendelian randomization study.
Morning-preference chronotype has been found to be protective against breast and prostate cancer. Sex hormones have been implicated in relation to chronotype and the development of both cancers. This study aimed to assess whether sex hormones confound or mediate the effect of chronotype on breast and prostate cancer using a Mendelian Randomization (MR) framework. Genetic variants associated with chronotype and sex hormones (total testosterone, bioavailable testosterone, sex hormone binding globulin, and oestradiol) (p
Abstract.
Author URL.
Hazelwood E, Sanderson E, Tan VY, Ruth KS, Frayling TM, Dimou N, Gunter MJ, Dossus L, Newton C, Ryan N, et al (2022). Identifying molecular mediators of the relationship between body mass index and endometrial cancer risk: a Mendelian randomization analysis.
BMC Medicine,
20(1).
Abstract:
Identifying molecular mediators of the relationship between body mass index and endometrial cancer risk: a Mendelian randomization analysis
Background: Endometrial cancer is the most common gynaecological cancer in high-income countries. Elevated body mass index (BMI) is an established modifiable risk factor for this condition and is estimated to confer a larger effect on endometrial cancer risk than any other cancer site. However, the molecular mechanisms underpinning this association remain unclear. We used Mendelian randomization (MR) to evaluate the causal role of 14 molecular risk factors (hormonal, metabolic and inflammatory markers) in endometrial cancer risk. We then evaluated and quantified the potential mediating role of these molecular traits in the relationship between BMI and endometrial cancer using multivariable MR. Methods: Genetic instruments to proxy 14 molecular risk factors and BMI were constructed by identifying single-nucleotide polymorphisms (SNPs) reliably associated (P < 5.0 × 10−8) with each respective risk factor in previous genome-wide association studies (GWAS). Summary statistics for the association of these SNPs with overall and subtype-specific endometrial cancer risk (12,906 cases and 108,979 controls) were obtained from a GWAS meta-analysis of the Endometrial Cancer Association Consortium (ECAC), Epidemiology of Endometrial Cancer Consortium (E2C2) and UK Biobank. SNPs were combined into multi-allelic models and odds ratios (ORs) and 95% confidence intervals (95% CIs) were generated using inverse-variance weighted random-effects models. The mediating roles of the molecular risk factors in the relationship between BMI and endometrial cancer were then estimated using multivariable MR. Results: in MR analyses, there was strong evidence that BMI (OR per standard deviation (SD) increase 1.88, 95% CI 1.69 to 2.09, P = 3.87 × 10−31), total testosterone (OR per inverse-normal transformed nmol/L increase 1.64, 95% CI 1.43 to 1.88, P = 1.71 × 10−12), bioavailable testosterone (OR per natural log transformed nmol/L increase: 1.46, 95% CI 1.29 to 1.65, P = 3.48 × 10−9), fasting insulin (OR per natural log transformed pmol/L increase: 3.93, 95% CI 2.29 to 6.74, P = 7.18 × 10−7) and sex hormone-binding globulin (SHBG, OR per inverse-normal transformed nmol/L increase 0.71, 95% CI 0.59 to 0.85, P = 2.07 × 10−4) had a causal effect on endometrial cancer risk. Additionally, there was suggestive evidence that total serum cholesterol (OR per mg/dL increase 0.90, 95% CI 0.81 to 1.00, P = 4.01 × 10−2) had an effect on endometrial cancer risk. In mediation analysis, we found evidence for a mediating role of fasting insulin (19% total effect mediated, 95% CI 5 to 34%, P = 9.17 × 10−3), bioavailable testosterone (15% mediated, 95% CI 10 to 20%, P = 1.43 × 10−8) and SHBG (7% mediated, 95% CI 1 to 12%, P = 1.81 × 10−2) in the relationship between BMI and endometrial cancer risk. Conclusions: Our comprehensive MR analysis provides insight into potential causal mechanisms linking BMI with endometrial cancer risk and suggests targeting of insulinemic and hormonal traits as a potential strategy for the prevention of endometrial cancer.
Abstract.
Shekari S, Stankovic S, Ruth KS, Prague J, Perry J, Murray A (2022). O-147 Genomic analyses in 101,127 UK women show that previously reported monogenic genes are not common causes of premature ovarian insufficiency. Human Reproduction, 37(Supplement_1).
van der Laan CM, Morosoli-García JJ, van de Weijer SGA, Colodro-Conde L, Ip HF, van der Laan CM, Krapohl EML, Brikell I, Sánchez-Mora C, Nolte IM, et al (2021). Continuity of Genetic Risk for Aggressive Behavior Across the Life-Course.
Behavior Genetics,
51(5), 592-606.
Abstract:
Continuity of Genetic Risk for Aggressive Behavior Across the Life-Course
We test whether genetic influences that explain individual differences in aggression in early life also explain individual differences across the life-course. In two cohorts from the Netherlands (N = 13,471) and Australia (N = 5628), polygenic scores (PGSs) were computed based on a genome-wide meta-analysis of childhood/adolescence aggression. In a novel analytic approach, we ran a mixed effects model for each age (Netherlands: 12–70 years, Australia: 16–73 years), with observations at the focus age weighted as 1, and decaying weights for ages further away. We call this approach a ‘rolling weights’ model. In the Netherlands, the estimated effect of the PGS was relatively similar from age 12 to age 41, and decreased from age 41–70. In Australia, there was a peak in the effect of the PGS around age 40 years. These results are a first indication from a molecular genetics perspective that genetic influences on aggressive behavior that are expressed in childhood continue to play a role later in life.
Abstract.
Ip HF, van der Laan CM, Krapohl EML, Brikell I, Sánchez-Mora C, Nolte IM, St Pourcain B, Bolhuis K, Palviainen T, Zafarmand H, et al (2021). Genetic association study of childhood aggression across raters, instruments, and age.
Transl Psychiatry,
11(1).
Abstract:
Genetic association study of childhood aggression across raters, instruments, and age.
Childhood aggressive behavior (AGG) has a substantial heritability of around 50%. Here we present a genome-wide association meta-analysis (GWAMA) of childhood AGG, in which all phenotype measures across childhood ages from multiple assessors were included. We analyzed phenotype assessments for a total of 328 935 observations from 87 485 children aged between 1.5 and 18 years, while accounting for sample overlap. We also meta-analyzed within subsets of the data, i.e. within rater, instrument and age. SNP-heritability for the overall meta-analysis (AGGoverall) was 3.31% (SE = 0.0038). We found no genome-wide significant SNPs for AGGoverall. The gene-based analysis returned three significant genes: ST3GAL3 (P = 1.6E-06), PCDH7 (P = 2.0E-06), and IPO13 (P = 2.5E-06). All three genes have previously been associated with educational traits. Polygenic scores based on our GWAMA significantly predicted aggression in a holdout sample of children (variance explained = 0.44%) and in retrospectively assessed childhood aggression (variance explained = 0.20%). Genetic correlations (rg) among rater-specific assessment of AGG ranged from rg = 0.46 between self- and teacher-assessment to rg = 0.81 between mother- and teacher-assessment. We obtained moderate-to-strong rgs with selected phenotypes from multiple domains, but hardly with any of the classical biomarkers thought to be associated with AGG. Significant genetic correlations were observed with most psychiatric and psychological traits (range [Formula: see text]: 0.19-1.00), except for obsessive-compulsive disorder. Aggression had a negative genetic correlation (rg = ~-0.5) with cognitive traits and age at first birth. Aggression was strongly genetically correlated with smoking phenotypes (range [Formula: see text]: 0.46-0.60). The genetic correlations between aggression and psychiatric disorders were weaker for teacher-reported AGG than for mother- and self-reported AGG. The current GWAMA of childhood aggression provides a powerful tool to interrogate the rater-specific genetic etiology of AGG.
Abstract.
Author URL.
Ruth KS, Day FR, Hussain J, Martínez-Marchal A, Aiken CE, Azad A, Thompson DJ, Knoblochova L, Abe H, Tarry-Adkins JL, et al (2021). Genetic insights into biological mechanisms governing human ovarian ageing.
Nature,
596(7872), 393-397.
Abstract:
Genetic insights into biological mechanisms governing human ovarian ageing.
Reproductive longevity is essential for fertility and influences healthy ageing in women1,2, but insights into its underlying biological mechanisms and treatments to preserve it are limited. Here we identify 290 genetic determinants of ovarian ageing, assessed using normal variation in age at natural menopause (ANM) in about 200,000 women of European ancestry. These common alleles were associated with clinical extremes of ANM; women in the top 1% of genetic susceptibility have an equivalent risk of premature ovarian insufficiency to those carrying monogenic FMR1 premutations3. The identified loci implicate a broad range of DNA damage response (DDR) processes and include loss-of-function variants in key DDR-associated genes. Integration with experimental models demonstrates that these DDR processes act across the life-course to shape the ovarian reserve and its rate of depletion. Furthermore, we demonstrate that experimental manipulation of DDR pathways highlighted by human genetics increases fertility and extends reproductive life in mice. Causal inference analyses using the identified genetic variants indicate that extending reproductive life in women improves bone health and reduces risk of type 2 diabetes, but increases the risk of hormone-sensitive cancers. These findings provide insight into the mechanisms that govern ovarian ageing, when they act, and how they might be targeted by therapeutic approaches to extend fertility and prevent disease.
Abstract.
Author URL.
RUTH KS, DAY F, TYRRELL J, MURRAY A, ONG K, FRAYLING T, PERRY J (2020). 1907-P: Using Human Genetics to Test the Disease Consequences of Varying Testosterone Levels in Men and Women. Diabetes, 69(Supplement_1).
Ruth KS, Day FR, Tyrrell J, Thompson DJ, Wood AR, Mahajan A, Beaumont RN, Wittemans L, Martin S, Busch AS, et al (2020). Using human genetics to understand the disease impacts of testosterone in men and women. Nature Medicine, 26(2), 252-258.
Bovijn J, Jackson L, Censin J, Chen C-Y, Laisk T, Laber S, Ferreira T, Pulit SL, Glastonbury CA, Smoller JW, et al (2019). GWAS Identifies Risk Locus for Erectile Dysfunction and Implicates Hypothalamic Neurobiology and Diabetes in Etiology.
Am J Hum Genet,
104(1), 157-163.
Abstract:
GWAS Identifies Risk Locus for Erectile Dysfunction and Implicates Hypothalamic Neurobiology and Diabetes in Etiology.
Erectile dysfunction (ED) is a common condition affecting more than 20% of men over 60 years, yet little is known about its genetic architecture. We performed a genome-wide association study of ED in 6,175 case subjects among 223,805 European men and identified one locus at 6q16.3 (lead variant rs57989773, OR 1.20 per C-allele; p = 5.71 × 10-14), located between MCHR2 and SIM1. In silico analysis suggests SIM1 to confer ED risk through hypothalamic dysregulation. Mendelian randomization provides evidence that genetic risk of type 2 diabetes mellitus is a cause of ED (OR 1.11 per 1-log unit higher risk of type 2 diabetes). These findings provide insights into the biological underpinnings and the causes of ED and may help prioritize the development of future therapies for this common disorder.
Abstract.
Author URL.
Ji Y, Yiorkas AM, Frau F, Mook-Kanamori D, Staiger H, Thomas EL, Atabaki-Pasdar N, Campbell A, Tyrrell J, Jones SE, et al (2019). Genome-Wide and Abdominal MRI Data Provide Evidence That a Genetically Determined Favorable Adiposity Phenotype is Characterized by Lower Ectopic Liver Fat and Lower Risk of Type 2 Diabetes, Heart Disease, and Hypertension.
Diabetes,
68(1), 207-219.
Abstract:
Genome-Wide and Abdominal MRI Data Provide Evidence That a Genetically Determined Favorable Adiposity Phenotype is Characterized by Lower Ectopic Liver Fat and Lower Risk of Type 2 Diabetes, Heart Disease, and Hypertension.
Recent genetic studies have identified alleles associated with opposite effects on adiposity and risk of type 2 diabetes. We aimed to identify more of these variants and test the hypothesis that such favorable adiposity alleles are associated with higher subcutaneous fat and lower ectopic fat. We combined MRI data with genome-wide association studies of body fat percentage (%) and metabolic traits. We report 14 alleles, including 7 newly characterized alleles, associated with higher adiposity but a favorable metabolic profile. Consistent with previous studies, individuals carrying more favorable adiposity alleles had higher body fat % and higher BMI but lower risk of type 2 diabetes, heart disease, and hypertension. These individuals also had higher subcutaneous fat but lower liver fat and a lower visceral-to-subcutaneous adipose tissue ratio. Individual alleles associated with higher body fat % but lower liver fat and lower risk of type 2 diabetes included those in PPARG, GRB14, and IRS1, whereas the allele in ANKRD55 was paradoxically associated with higher visceral fat but lower risk of type 2 diabetes. Most identified favorable adiposity alleles are associated with higher subcutaneous and lower liver fat, a mechanism consistent with the beneficial effects of storing excess triglycerides in metabolically low-risk depots.
Abstract.
Author URL.
Ruth KS, Soares ALG, Borges M-C, Eliassen AH, Hankinson SE, Jones ME, Kraft P, Nichols HB, Sandler DP, Schoemaker MJ, et al (2019). Genome-wide association study of anti-Müllerian hormone levels in pre-menopausal women of late reproductive age and relationship with genetic determinants of reproductive lifespan.
Hum Mol Genet,
28(8), 1392-1401.
Abstract:
Genome-wide association study of anti-Müllerian hormone levels in pre-menopausal women of late reproductive age and relationship with genetic determinants of reproductive lifespan.
Anti-Müllerian hormone (AMH) is required for sexual differentiation in the fetus, and in adult females AMH is produced by growing ovarian follicles. Consequently, AMH levels are correlated with ovarian reserve, declining towards menopause when the oocyte pool is exhausted. A previous genome-wide association study identified three genetic variants in and around the AMH gene that explained 25% of variation in AMH levels in adolescent males but did not identify any genetic associations reaching genome-wide significance in adolescent females. To explore the role of genetic variation in determining AMH levels in women of late reproductive age, we carried out a genome-wide meta-analysis in 3344 pre-menopausal women from five cohorts (median age 44-48 years at blood draw). A single genetic variant, rs16991615, previously associated with age at menopause, reached genome-wide significance at P = 3.48 × 10-10, with a per allele difference in age-adjusted inverse normal AMH of 0.26 standard deviations (SD) (95% confidence interval (CI) [0.18,0.34]). We investigated whether genetic determinants of female reproductive lifespan were more generally associated with pre-menopausal AMH levels. Genetically-predicted age at menarche had no robust association but genetically-predicted age at menopause was associated with lower AMH levels by 0.18 SD (95% CI [0.14,0.21]) in age-adjusted inverse normal AMH per one-year earlier age at menopause. Our findings provide genetic support for the well-established use of AMH as a marker of ovarian reserve.
Abstract.
Author URL.
Warrington NM, Beaumont RN, Horikoshi M, Day FR, Helgeland Ø, Laurin C, Bacelis J, Peng S, Hao K, Feenstra B, et al (2019). Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors.
Nat Genet,
51(5), 804-814.
Abstract:
Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors.
Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n = 321,223) and offspring birth weight (n = 230,069 mothers), we identified 190 independent association signals (129 of which are novel). We used structural equation modeling to decompose the contributions of direct fetal and indirect maternal genetic effects, then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of these alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming.
Abstract.
Author URL.
Tuke MA, Ruth KS, Wood AR, Beaumont RN, Tyrrell J, Jones SE, Yaghootkar H, Turner CLS, Donohoe ME, Brooke AM, et al (2019). Mosaic Turner syndrome shows reduced penetrance in an adult population study.
Genet Med,
21(4), 877-886.
Abstract:
Mosaic Turner syndrome shows reduced penetrance in an adult population study.
PURPOSE: Many women with X chromosome aneuploidy undergo lifetime clinical monitoring for possible complications. However, ascertainment of cases in the clinic may mean that the penetrance has been overestimated. METHODS: We characterized the prevalence and phenotypic consequences of X chromosome aneuploidy in a population of 244,848 women over 40 years of age from UK Biobank, using single-nucleotide polymorphism (SNP) array data. RESULTS: We detected 30 women with 45,X; 186 with mosaic 45,X/46,XX; and 110 with 47,XXX. The prevalence of nonmosaic 45,X (12/100,000) and 47,XXX (45/100,000) was lower than expected, but was higher for mosaic 45,X/46,XX (76/100,000). The characteristics of women with 45,X were consistent with the characteristics of a clinically recognized Turner syndrome phenotype, including short stature and primary amenorrhea. In contrast, women with mosaic 45,X/46,XX were less short, had a normal reproductive lifespan and birth rate, and no reported cardiovascular complications. The phenotype of women with 47,XXX included taller stature (5.3 cm; SD = 5.52 cm; P = 5.8 × 10-20) and earlier menopause age (5.12 years; SD = 5.1 years; P = 1.2 × 10-14). CONCLUSION: Our results suggest that the clinical management of women with 45,X/46,XX mosaicism should be minimal, particularly those identified incidentally.
Abstract.
Author URL.
Justice AE, Karaderi T, Highland HM, Young KL, Graff M, Lu Y, Turcot V, Auer PL, Fine RS, Guo X, et al (2019). Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution.
Nat Genet,
51(3), 452-469.
Abstract:
Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution.
Body-fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed the association of body-fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry individuals (validation). We identified 15 common (minor allele frequency, MAF ≥5%) and nine low-frequency or rare (MAF
Abstract.
Author URL.
Tuke MA, Ruth KS, Wood AR, Beaumont RN, Tyrrell J, Jones SE, Yaghootkar H, Turner CLS, Donohoe ME, Brooke AM, et al (2019). Response to Prakash et al.
Genet Med,
21(8), 1884-1885.
Author URL.
Tyrrell J, Mulugeta A, Wood AR, Zhou A, Beaumont RN, Tuke MA, Jones SE, Ruth KS, Yaghootkar H, Sharp S, et al (2019). Using genetics to understand the causal influence of higher BMI on depression.
Int J Epidemiol,
48(3), 834-848.
Abstract:
Using genetics to understand the causal influence of higher BMI on depression.
BACKGROUND: Depression is more common in obese than non-obese individuals, especially in women, but the causal relationship between obesity and depression is complex and uncertain. Previous studies have used genetic variants associated with BMI to provide evidence that higher body mass index (BMI) causes depression, but have not tested whether this relationship is driven by the metabolic consequences of BMI nor for differences between men and women. METHODS: We performed a Mendelian randomization study using 48 791 individuals with depression and 291 995 controls in the UK Biobank, to test for causal effects of higher BMI on depression (defined using self-report and Hospital Episode data). We used two genetic instruments, both representing higher BMI, but one with and one without its adverse metabolic consequences, in an attempt to 'uncouple' the psychological component of obesity from the metabolic consequences. We further tested causal relationships in men and women separately, and using subsets of BMI variants from known physiological pathways. RESULTS: Higher BMI was strongly associated with higher odds of depression, especially in women. Mendelian randomization provided evidence that higher BMI partly causes depression. Using a 73-variant BMI genetic risk score, a genetically determined one standard deviation (1 SD) higher BMI (4.9 kg/m2) was associated with higher odds of depression in all individuals [odds ratio (OR): 1.18, 95% confidence interval (CI): 1.09, 1.28, P = 0.00007) and women only (OR: 1.24, 95% CI: 1.11, 1.39, P = 0.0001). Meta-analysis with 45 591 depression cases and 97 647 controls from the Psychiatric Genomics Consortium (PGC) strengthened the statistical confidence of the findings in all individuals. Similar effect size estimates were obtained using different Mendelian randomization methods, although not all reached P
Abstract.
Author URL.
Frayling TM, Beaumont RN, Jones SE, Yaghootkar H, Tuke MA, Ruth KS, Casanova F, West B, Locke J, Sharp S, et al (2018). A Common Allele in FGF21 Associated with Sugar Intake is Associated with Body Shape, Lower Total Body-Fat Percentage, and Higher Blood Pressure.
Cell Rep,
23(2), 327-336.
Abstract:
A Common Allele in FGF21 Associated with Sugar Intake is Associated with Body Shape, Lower Total Body-Fat Percentage, and Higher Blood Pressure.
Fibroblast growth factor 21 (FGF21) is a hormone that has insulin-sensitizing properties. Some trials of FGF21 analogs show weight loss and lipid-lowering effects. Recent studies have shown that a common allele in the FGF21 gene alters the balance of macronutrients consumed, but there was little evidence of an effect on metabolic traits. We studied a common FGF21 allele (A:rs838133) in 451,099 people from the UK Biobank study, aiming to use the human allele to inform potential adverse and beneficial effects of targeting FGF21. We replicated the association between the a allele and higher percentage carbohydrate intake. We then showed that this allele is more strongly associated with higher blood pressure and waist-hip ratio, despite an association with lower total body-fat percentage, than it is with BMI or type 2 diabetes. These human phenotypes of variation in the FGF21 gene will inform research into FGF21's mechanisms and therapeutic potential.
Abstract.
Author URL.
Trajanoska K, Morris JA, Oei L, Zheng H-F, Evans DM, Kiel DP, Ohlsson C, Richards JB, Rivadeneira F, GEFOS/GENOMOS consortium and the 23andMe research team, et al (2018). Assessment of the genetic and clinical determinants of fracture risk: genome wide association and mendelian randomisation study.
BMJ,
362Abstract:
Assessment of the genetic and clinical determinants of fracture risk: genome wide association and mendelian randomisation study.
OBJECTIVES: to identify the genetic determinants of fracture risk and assess the role of 15 clinical risk factors on osteoporotic fracture risk. DESIGN: Meta-analysis of genome wide association studies (GWAS) and a two-sample mendelian randomisation approach. SETTING: 25 cohorts from Europe, United States, east Asia, and Australia with genome wide genotyping and fracture data. PARTICIPANTS: a discovery set of 37 857 fracture cases and 227 116 controls; with replication in up to 147 200 fracture cases and 150 085 controls. Fracture cases were defined as individuals (>18 years old) who had fractures at any skeletal site confirmed by medical, radiological, or questionnaire reports. Instrumental variable analyses were performed to estimate effects of 15 selected clinical risk factors for fracture in a two-sample mendelian randomisation framework, using the largest previously published GWAS meta-analysis of each risk factor. RESULTS: of 15 fracture associated loci identified, all were also associated with bone mineral density and mapped to genes clustering in pathways known to be critical to bone biology (eg, SOST, WNT16, and ESR1) or novel pathways (FAM210A, GRB10, and ETS2). Mendelian randomisation analyses showed a clear effect of bone mineral density on fracture risk. One standard deviation decrease in genetically determined bone mineral density of the femoral neck was associated with a 55% increase in fracture risk (odds ratio 1.55 (95% confidence interval 1.48 to 1.63; P=1.5×10-68). Hand grip strength was inversely associated with fracture risk, but this result was not significant after multiple testing correction. The remaining clinical risk factors (including vitamin D levels) showed no evidence for an effect on fracture. CONCLUSIONS: This large scale GWAS meta-analysis for fracture identified 15 genetic determinants of fracture, all of which also influenced bone mineral density. Among the clinical risk factors for fracture assessed, only bone mineral density showed a major causal effect on fracture. Genetic predisposition to lower levels of vitamin D and estimated calcium intake from dairy sources were not associated with fracture risk.
Abstract.
Author URL.
Beaumont RN, Warrington NM, Cavadino A, Tyrrell J, Nodzenski M, Horikoshi M, Geller F, Myhre R, Richmond RC, Paternoster L, et al (2018). Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics.
Hum Mol Genet,
27(4), 742-756.
Abstract:
Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics.
Genome-wide association studies of birth weight have focused on fetal genetics, whereas relatively little is known about the role of maternal genetic variation. We aimed to identify maternal genetic variants associated with birth weight that could highlight potentially relevant maternal determinants of fetal growth. We meta-analysed data on up to 8.7 million SNPs in up to 86 577 women of European descent from the Early Growth Genetics (EGG) Consortium and the UK Biobank. We used structural equation modelling (SEM) and analyses of mother-child pairs to quantify the separate maternal and fetal genetic effects. Maternal SNPs at 10 loci (MTNR1B, HMGA2, SH2B3, KCNAB1, L3MBTL3, GCK, EBF1, TCF7L2, ACTL9, CYP3A7) were associated with offspring birth weight at P
Abstract.
Author URL.
Justice AE, Karaderi T, Highland HM, Young KL, Graff M, Lu Y, Turcot V, Auer PL, Fine RS, Guo X, et al (2018). Protein-Coding Variants Implicate Novel Genes Related to Lipid Homeostasis Contributing to Body Fat Distribution.
Abstract:
Protein-Coding Variants Implicate Novel Genes Related to Lipid Homeostasis Contributing to Body Fat Distribution
ABSTRACTBody fat distribution is a heritable risk factor for a range of adverse health consequences, including hyperlipidemia and type 2 diabetes. To identify protein-coding variants associated with body fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, we analyzed 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries for discovery and 132,177 independent European-ancestry individuals for validation. We identified 15 common (minor allele frequency, MAF≥5%) and 9 low frequency or rare (MAF<5%) coding variants that have not been reported previously. Pathway/gene set enrichment analyses of all associated variants highlight lipid particle, adiponectin level, abnormal white adipose tissue physiology, and bone development and morphology as processes affecting fat distribution and body shape. Furthermore, the cross-trait associations and the analyses of variant and gene function highlight a strong connection to lipids, cardiovascular traits, and type 2 diabetes. In functional follow-up analyses, specifically in Drosophila RNAi-knockdown crosses, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). By examining variants often poorly tagged or entirely missed by genome-wide association studies, we implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants.
Abstract.
Turcot V, Lu Y, Highland HM, Schurmann C, Justice AE, Fine RS, Bradfield JP, Esko T, Giri A, Graff M, et al (2018). Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity.
Nat Genet,
50(1), 26-41.
Abstract:
Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity.
Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are ~10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed ~7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.
Abstract.
Author URL.
Macé A, Tuke MA, Deelen P, Kristiansson K, Mattsson H, Nõukas M, Sapkota Y, Schick U, Porcu E, Rüeger S, et al (2017). CNV-association meta-analysis in 191,161 European adults reveals new loci associated with anthropometric traits.
Nat Commun,
8(1).
Abstract:
CNV-association meta-analysis in 191,161 European adults reveals new loci associated with anthropometric traits.
There are few examples of robust associations between rare copy number variants (CNVs) and complex continuous human traits. Here we present a large-scale CNV association meta-analysis on anthropometric traits in up to 191,161 adult samples from 26 cohorts. The study reveals five CNV associations at 1q21.1, 3q29, 7q11.23, 11p14.2, and 18q21.32 and confirms two known loci at 16p11.2 and 22q11.21, implicating at least one anthropometric trait. The discovered CNVs are recurrent and rare (0.01-0.2%), with large effects on height (>2.4 cm), weight (>5 kg), and body mass index (BMI) (>3.5 kg/m2). Burden analysis shows a 0.41 cm decrease in height, a 0.003 increase in waist-to-hip ratio and increase in BMI by 0.14 kg/m2 for each Mb of total deletion burden (P = 2.5 × 10-10, 6.0 × 10-5, and 2.9 × 10-3). Our study provides evidence that the same genes (e.g. MC4R, FIBIN, and FMO5) harbor both common and rare variants affecting body size and that anthropometric traits share genetic loci with developmental and psychiatric disorders.Individual SNPs have small effects on anthropometric traits, yet the impact of CNVs has remained largely unknown. Here, Kutalik and co-workers perform a large-scale genome-wide meta-analysis of structural variation and find rare CNVs associated with height, weight and BMI with large effect sizes.
Abstract.
Author URL.
Tyrrell J, Wood AR, Ames RM, Yaghootkar H, Beaumont RN, Jones SE, Tuke MA, Ruth KS, Freathy RM, Davey Smith G, et al (2017). Gene-obesogenic environment interactions in the UK Biobank study.
Int J Epidemiol,
46(2), 559-575.
Abstract:
Gene-obesogenic environment interactions in the UK Biobank study.
BACKGROUND: Previous studies have suggested that modern obesogenic environments accentuate the genetic risk of obesity. However, these studies have proven controversial as to which, if any, measures of the environment accentuate genetic susceptibility to high body mass index (BMI). METHODS: We used up to 120 000 adults from the UK Biobank study to test the hypothesis that high-risk obesogenic environments and behaviours accentuate genetic susceptibility to obesity. We used BMI as the outcome and a 69-variant genetic risk score (GRS) for obesity and 12 measures of the obesogenic environment as exposures. These measures included Townsend deprivation index (TDI) as a measure of socio-economic position, TV watching, a 'Westernized' diet and physical activity. We performed several negative control tests, including randomly selecting groups of different average BMIs, using a simulated environment and including sun-protection use as an environment. RESULTS: We found gene-environment interactions with TDI (Pinteraction = 3 × 10 -10 ), self-reported TV watching (Pinteraction = 7 × 10 -5 ) and self-reported physical activity (Pinteraction = 5 × 10 -6 ). Within the group of 50% living in the most relatively deprived situations, carrying 10 additional BMI-raising alleles was associated with approximately 3.8 kg extra weight in someone 1.73 m tall. In contrast, within the group of 50% living in the least deprivation, carrying 10 additional BMI-raising alleles was associated with approximately 2.9 kg extra weight. The interactions were weaker, but present, with the negative controls, including sun-protection use, indicating that residual confounding is likely. CONCLUSIONS: Our findings suggest that the obesogenic environment accentuates the risk of obesity in genetically susceptible adults. of the factors we tested, relative social deprivation best captures the aspects of the obesogenic environment responsible.
Abstract.
Author URL.
Day FR, Thompson DJ, Helgason H, Chasman DI, Finucane H, Sulem P, Ruth KS, Whalen S, Sarkar AK, Albrecht E, et al (2017). Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk.
Nat Genet,
49(6), 834-841.
Abstract:
Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk.
The timing of puberty is a highly polygenic childhood trait that is epidemiologically associated with various adult diseases. Using 1000 Genomes Project-imputed genotype data in up to ∼370,000 women, we identify 389 independent signals (P < 5 × 10-8) for age at menarche, a milestone in female pubertal development. In Icelandic data, these signals explain ∼7.4% of the population variance in age at menarche, corresponding to ∼25% of the estimated heritability. We implicate ∼250 genes via coding variation or associated expression, demonstrating significant enrichment in neural tissues. Rare variants near the imprinted genes MKRN3 and DLK1 were identified, exhibiting large effects when paternally inherited. Mendelian randomization analyses suggest causal inverse associations, independent of body mass index (BMI), between puberty timing and risks for breast and endometrial cancers in women and prostate cancer in men. In aggregate, our findings highlight the complexity of the genetic regulation of puberty timing and support causal links with cancer susceptibility.
Abstract.
Author URL.
Willems SM, Wright DJ, Day FR, Trajanoska K, Joshi PK, Morris JA, Matteini AM, Garton FC, Grarup N, Oskolkov N, et al (2017). Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness.
Nat Commun,
8Abstract:
Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness.
Hand grip strength is a widely used proxy of muscular fitness, a marker of frailty, and predictor of a range of morbidities and all-cause mortality. To investigate the genetic determinants of variation in grip strength, we perform a large-scale genetic discovery analysis in a combined sample of 195,180 individuals and identify 16 loci associated with grip strength (P
Abstract.
Author URL.
Yaghootkar H, Bancks MP, Jones SE, McDaid A, Beaumont R, Donnelly L, Wood AR, Campbell A, Tyrrell J, Hocking LJ, et al (2017). Quantifying the extent to which index event biases influence large genetic association studies.
Hum Mol Genet,
26(5), 1018-1030.
Abstract:
Quantifying the extent to which index event biases influence large genetic association studies.
As genetic association studies increase in size to 100 000s of individuals, subtle biases may influence conclusions. One possible bias is 'index event bias' (IEB) that appears due to the stratification by, or enrichment for, disease status when testing associations between genetic variants and a disease-associated trait. We aimed to test the extent to which IEB influences some known trait associations in a range of study designs and provide a statistical framework for assessing future associations. Analyzing data from 113 203 non-diabetic UK Biobank participants, we observed three (near TCF7L2, CDKN2AB and CDKAL1) overestimated (body mass index (BMI) decreasing) and one (near MTNR1B) underestimated (BMI increasing) associations among 11 type 2 diabetes risk alleles (at P < 0.05). IEB became even stronger when we tested a type 2 diabetes genetic risk score composed of these 11 variants (-0.010 standard deviations BMI per allele, P = 5 × 10- 4), which was confirmed in four additional independent studies. Similar results emerged when examining the effect of blood pressure increasing alleles on BMI in normotensive UK Biobank samples. Furthermore, we demonstrated that, under realistic scenarios, common disease alleles would become associated at P < 5 × 10- 8 with disease-related traits through IEB alone, if disease prevalence in the sample differs appreciably from the background population prevalence. For example, some hypertension and type 2 diabetes alleles will be associated with BMI in sample sizes of >500 000 if the prevalence of those diseases differs by >10% from the background population. In conclusion, IEB may result in false positive or negative genetic associations in very large studies stratified or strongly enriched for/against disease cases.
Abstract.
Author URL.
Marouli E, Graff M, Medina-Gomez C, Lo KS, Wood AR, Kjaer TR, Fine RS, Lu Y, Schurmann C, Highland HM, et al (2017). Rare and low-frequency coding variants alter human adult height.
Nature,
542(7640), 186-190.
Abstract:
Rare and low-frequency coding variants alter human adult height.
Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height-increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.
Abstract.
Author URL.
Pilling LC, Atkins JL, Duff MO, Beaumont RN, Jones SE, Tyrrell J, Kuo C-L, Ruth KS, Tuke MA, Yaghootkar H, et al (2017). Red blood cell distribution width: Genetic evidence for aging pathways in 116,666 volunteers.
PLoS One,
12(9).
Abstract:
Red blood cell distribution width: Genetic evidence for aging pathways in 116,666 volunteers.
INTRODUCTION: Variability in red blood cell volumes (distribution width, RDW) increases with age and is strongly predictive of mortality, incident coronary heart disease and cancer. We investigated inherited genetic variation associated with RDW in 116,666 UK Biobank human volunteers. RESULTS: a large proportion RDW is explained by genetic variants (29%), especially in the older group (60+ year olds, 33.8%,
Abstract.
Author URL.
Ruth KS, Perry JRB, Henley WE, Melzer D, Weedon MN, Murray A (2016). Events in Early Life are Associated with Female Reproductive Ageing: a UK Biobank Study.
Sci Rep,
6Abstract:
Events in Early Life are Associated with Female Reproductive Ageing: a UK Biobank Study.
The available oocyte pool is determined before birth, with the majority of oocytes lost before puberty. We hypothesised that events occurring before birth, in childhood or in adolescence ('early-life risk factors') could influence the size of the oocyte pool and thus the timing of menopause. We included cross-sectional data from 273,474 women from the UK Biobank, recruited in 2006-2010 from across the UK. We analysed the association of early menopause with events occurring before adulthood in 11,781 cases (menopause aged under 45) and 173,641 controls (menopause/pre-menopausal at ≥ 45 years), in models controlling for potential confounding variables. Being part of a multiple birth was strongly associated with early menopause (odds ratio = 1.42, confidence interval: 1.11, 1.82, P = 8.0 × 10(-9), fully-adjusted model). Earlier age at menarche (odds ratio = 1.03, confidence interval: 1.01, 1.06, P = 2.5 × 10(-6)) and earlier year of birth were also associated with EM (odds ratio = 1.02, confidence interval: 1.00, 1.04, P = 8.0 × 10(-6)). We also confirmed previously reported associations with smoking, drinking alcohol, educational level and number of births. We identified an association between multiple births and early menopause, which connects events pre-birth, when the oocyte pool is formed, with reproductive ageing in later life.
Abstract.
Author URL.
Yaghootkar H, Lotta LA, Tyrrell J, Smit RAJ, Jones SE, Donnelly L, Beaumont R, Campbell A, Tuke MA, Hayward C, et al (2016). Genetic Evidence for a Link Between Favorable Adiposity and Lower Risk of Type 2 Diabetes, Hypertension, and Heart Disease.
Diabetes,
65(8), 2448-2460.
Abstract:
Genetic Evidence for a Link Between Favorable Adiposity and Lower Risk of Type 2 Diabetes, Hypertension, and Heart Disease.
Recent genetic studies have identified some alleles that are associated with higher BMI but lower risk of type 2 diabetes, hypertension, and heart disease. These "favorable adiposity" alleles are collectively associated with lower insulin levels and higher subcutaneous-to-visceral adipose tissue ratio and may protect from disease through higher adipose storage capacity. We aimed to use data from 164,609 individuals from the UK Biobank and five other studies to replicate associations between a genetic score of 11 favorable adiposity variants and adiposity and risk of disease, to test for interactions between BMI and favorable adiposity genetics, and to test effects separately in men and women. In the UK Biobank, the 50% of individuals carrying the most favorable adiposity alleles had higher BMIs (0.120 kg/m(2) [95% CI 0.066, 0.174]; P = 1E-5) and higher body fat percentage (0.301% [0.230, 0.372]; P = 1E-16) compared with the 50% of individuals carrying the fewest alleles. For a given BMI, the 50% of individuals carrying the most favorable adiposity alleles were at lower risk of type 2 diabetes (odds ratio [OR] 0.837 [0.784, 0.894]; P = 1E-7), hypertension (OR 0.935 [0.911, 0.958]; P = 1E-7), and heart disease (OR 0.921 [0.872, 0.973]; P = 0.003) and had lower blood pressure (systolic -0.859 mmHg [-1.099, -0.618]; P = 3E-12 and diastolic -0.394 mmHg [-0.534, -0.254]; P = 4E-8). In women, these associations could be explained by the observation that the alleles associated with higher BMI but lower risk of disease were also associated with a favorable body fat distribution, with a lower waist-to-hip ratio (-0.004 cm [95% CI -0.005, -0.003] 50% vs. 50%; P = 3E-14), but in men, the favorable adiposity alleles were associated with higher waist circumference (0.454 cm [0.267, 0.641] 50% vs. 50%; P = 2E-6) and higher waist-to-hip ratio (0.0013 [0.0003, 0.0024] 50% vs. 50%; P = 0.01). Results were strengthened when a meta-analysis with five additional studies was conducted. There was no evidence of interaction between a genetic score consisting of known BMI variants and the favorable adiposity genetic score. In conclusion, different molecular mechanisms that lead to higher body fat percentage (with greater subcutaneous storage capacity) can have different impacts on cardiometabolic disease risk. Although higher BMI is associated with higher risk of diseases, better fat storage capacity could reduce the risk.
Abstract.
Author URL.
Ruth KS, Beaumont RN, Tyrrell J, Jones SE, Tuke MA, Yaghootkar H, Wood AR, Freathy RM, Weedon MN, Frayling TM, et al (2016). Genetic evidence that lower circulating FSH levels lengthen menstrual cycle, increase age at menopause and impact female reproductive health.
Hum Reprod,
31(2), 473-481.
Abstract:
Genetic evidence that lower circulating FSH levels lengthen menstrual cycle, increase age at menopause and impact female reproductive health.
STUDY QUESTION: How does a genetic variant in the FSHB promoter, known to alter FSH levels, impact female reproductive health? SUMMARY ANSWER: the T allele of the FSHB promoter polymorphism (rs10835638; c.-211G>T) results in longer menstrual cycles and later menopause and, while having detrimental effects on fertility, is protective against endometriosis. WHAT IS KNOWN ALREADY: the FSHB promoter polymorphism (rs10835638; c.-211G>T) affects levels of FSHB transcription and, as a result, circulating levels of FSH. FSH is required for normal fertility and genetic variants at the FSHB locus are associated with age at menopause and polycystic ovary syndrome (PCOS). STUDY DESIGN, SIZE, DURATION: We used cross-sectional data from the UK Biobank to look at associations between the FSHB promoter polymorphism and reproductive traits, and performed a genome-wide association study (GWAS) for length of menstrual cycle. PARTICIPANTS/MATERIALS, SETTING, METHODS: We included white British individuals aged 40-69 years in 2006-2010, in the May 2015 release of genetic data from UK Biobank. We tested the FSH-lowering T allele of the FSHB promoter polymorphism (rs10835638; c.-211G>T) for associations with 29, mainly female, reproductive phenotypes in up to 63 350 women and 56 608 men. We conducted a GWAS in 9534 individuals to identify genetic variants associated with length of menstrual cycle. MAIN RESULTS AND THE ROLE OF CHANCE: the FSH-lowering T allele of the FSHB promoter polymorphism (rs10835638; MAF 0.16) was associated with longer menstrual cycles [0.16 SD (c. 1 day) per minor allele; 95% confidence interval (CI) 0.12-0.20; P = 6 × 10(-16)], later age at menopause (0.13 years per minor allele; 95% CI 0.04-0.22; P = 5.7 × 10(-3)), greater female nulliparity [odds ratio (OR) = 1.06; 95% CI 1.02-1.11; P = 4.8 × 10(-3)] and lower risk of endometriosis (OR = 0.79; 95% CI 0.69-0.90; P = 4.1 × 10(-4)). The FSH-lowering T allele was not associated with other female reproductive illnesses or conditions in our study and we did not replicate associations with male infertility or PCOS. In the GWAS for menstrual cycle length, only variants near the FSHB gene reached genome-wide significance (P < 5 × 10(-9)). LIMITATIONS, REASONS FOR CAUTION: the data included might be affected by recall bias. Cycle length was not available for 25% of women still cycling (1% did not answer, 6% did not know and for 18% cycle length was recorded as 'irregular'). Women with a cycle length recorded were aged over 40 and were approaching menopause; however, we did not find evidence that this affected the results. Many of the groups with illnesses had relatively small sample sizes and so the study may have been under-powered to detect an effect. WIDER IMPLICATIONS OF THE FINDINGS: We found a strong novel association between a genetic variant that lowers FSH levels and longer menstrual cycles, at a locus previously robustly associated with age at menopause. The variant was also associated with nulliparity and endometriosis risk. These findings should now be verified in a second independent group of patients. We conclude that lifetime differences in circulating levels of FSH between individuals can influence menstrual cycle length and a range of reproductive outcomes, including menopause timing, infertility, endometriosis and PCOS. STUDY FUNDING/COMPETING INTERESTS: None. TRIAL REGISTRATION NUMBER: Not applicable.
Abstract.
Author URL.
Jones SE, Tyrrell J, Wood AR, Beaumont RN, Ruth KS, Tuke MA, Yaghootkar H, Hu Y, Teder-Laving M, Hayward C, et al (2016). Genome-Wide Association Analyses in 128,266 Individuals Identifies New Morningness and Sleep Duration Loci.
PLoS Genet,
12(8).
Abstract:
Genome-Wide Association Analyses in 128,266 Individuals Identifies New Morningness and Sleep Duration Loci.
Disrupted circadian rhythms and reduced sleep duration are associated with several human diseases, particularly obesity and type 2 diabetes, but until recently, little was known about the genetic factors influencing these heritable traits. We performed genome-wide association studies of self-reported chronotype (morning/evening person) and self-reported sleep duration in 128,266 white British individuals from the UK Biobank study. Sixteen variants were associated with chronotype (P
Abstract.
Author URL.
Ruth KS, Campbell PJ, Chew S, Lim EM, Hadlow N, Stuckey BGA, Brown SJ, Feenstra B, Joseph J, Surdulescu GL, et al (2016). Genome-wide association study with 1000 genomes imputation identifies signals for nine sex hormone-related phenotypes.
Eur J Hum Genet,
24(2), 284-290.
Abstract:
Genome-wide association study with 1000 genomes imputation identifies signals for nine sex hormone-related phenotypes.
Genetic factors contribute strongly to sex hormone levels, yet knowledge of the regulatory mechanisms remains incomplete. Genome-wide association studies (GWAS) have identified only a small number of loci associated with sex hormone levels, with several reproductive hormones yet to be assessed. The aim of the study was to identify novel genetic variants contributing to the regulation of sex hormones. We performed GWAS using genotypes imputed from the 1000 Genomes reference panel. The study used genotype and phenotype data from a UK twin register. We included 2913 individuals (up to 294 males) from the Twins UK study, excluding individuals receiving hormone treatment. Phenotypes were standardised for age, sex, BMI, stage of menstrual cycle and menopausal status. We tested 7,879,351 autosomal SNPs for association with levels of dehydroepiandrosterone sulphate (DHEAS), oestradiol, free androgen index (FAI), follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin, progesterone, sex hormone-binding globulin and testosterone. Eight independent genetic variants reached genome-wide significance (P
Abstract.
Author URL.
Horikoshi M, Beaumont RN, Day FR, Warrington NM, Kooijman MN, Fernandez-Tajes J, Feenstra B, van Zuydam NR, Gaulton KJ, Grarup N, et al (2016). Genome-wide associations for birth weight and correlations with adult disease.
Nature,
538(7624), 248-252.
Abstract:
Genome-wide associations for birth weight and correlations with adult disease.
Birth weight (BW) has been shown to be influenced by both fetal and maternal factors and in observational studies is reproducibly associated with future risk of adult metabolic diseases including type 2 diabetes (T2D) and cardiovascular disease. These life-course associations have often been attributed to the impact of an adverse early life environment. Here, we performed a multi-ancestry genome-wide association study (GWAS) meta-analysis of BW in 153,781 individuals, identifying 60 loci where fetal genotype was associated with BW (P
Abstract.
Author URL.
Tyrrell J, Jones SE, Beaumont R, Astley CM, Lovell R, Yaghootkar H, Tuke M, Ruth KS, Freathy RM, Hirschhorn JN, et al (2016). Height, body mass index, and socioeconomic status: mendelian randomisation study in UK Biobank.
BMJ,
352Abstract:
Height, body mass index, and socioeconomic status: mendelian randomisation study in UK Biobank.
OBJECTIVE: to determine whether height and body mass index (BMI) have a causal role in five measures of socioeconomic status. DESIGN: Mendelian randomisation study to test for causal effects of differences in stature and BMI on five measures of socioeconomic status. Mendelian randomisation exploits the fact that genotypes are randomly assigned at conception and thus not confounded by non-genetic factors. SETTING: UK Biobank. PARTICIPANTS: 119,669 men and women of British ancestry, aged between 37 and 73 years. MAIN OUTCOME MEASURES: Age completed full time education, degree level education, job class, annual household income, and Townsend deprivation index. RESULTS: in the UK Biobank study, shorter stature and higher BMI were observationally associated with several measures of lower socioeconomic status. The associations between shorter stature and lower socioeconomic status tended to be stronger in men, and the associations between higher BMI and lower socioeconomic status tended to be stronger in women. For example, a 1 standard deviation (SD) higher BMI was associated with a £210 (€276; $300; 95% confidence interval £84 to £420; P=6 × 10(-3)) lower annual household income in men and a £1890 (£1680 to £2100; P=6 × 10(-15)) lower annual household income in women. Genetic analysis provided evidence that these associations were partly causal. A genetically determined 1 SD (6.3 cm) taller stature caused a 0.06 (0.02 to 0.09) year older age of completing full time education (P=0.01), a 1.12 (1.07 to 1.18) times higher odds of working in a skilled profession (P=6 × 10(-7)), and a £1130 (£680 to £1580) higher annual household income (P=4 × 10(-8)). Associations were stronger in men. A genetically determined 1 SD higher BMI (4.6 kg/m(2)) caused a £2940 (£1680 to £4200; P=1 × 10(-5)) lower annual household income and a 0.10 (0.04 to 0.16) SD (P=0.001) higher level of deprivation in women only. CONCLUSIONS: These data support evidence that height and BMI play an important partial role in determining several aspects of a person's socioeconomic status, especially women's BMI for income and deprivation and men's height for education, income, and job class. These findings have important social and health implications, supporting evidence that overweight people, especially women, are at a disadvantage and that taller people, especially men, are at an advantage.
Abstract.
Author URL.
Pilling LC, Atkins JL, Bowman K, Jones SE, Tyrrell J, Beaumont RN, Ruth KS, Tuke MA, Yaghootkar H, Wood AR, et al (2016). Human longevity is influenced by many genetic variants: evidence from 75,000 UK Biobank participants.
Aging (Albany NY),
8(3), 547-560.
Abstract:
Human longevity is influenced by many genetic variants: evidence from 75,000 UK Biobank participants.
Variation in human lifespan is 20 to 30% heritable in twins but few genetic variants have been identified. We undertook a Genome Wide Association Study (GWAS) using age at death of parents of middle-aged UK Biobank participants of European decent (n=75,244 with father's and/or mother's data, excluding early deaths). Genetic risk scores for 19 phenotypes (n=777 proven variants) were also tested. In GWAS, a nicotine receptor locus(CHRNA3, previously associated with increased smoking and lung cancer) was associated with fathers' survival. Less common variants requiring further confirmation were also identified. Offspring of longer lived parents had more protective alleles for coronary artery disease, systolic blood pressure, body mass index, cholesterol and triglyceride levels, type-1 diabetes, inflammatory bowel disease and Alzheimer's disease. In candidate analyses, variants in the TOMM40/APOE locus were associated with longevity, but FOXO variants were not. Associations between extreme longevity (mother >=98 years, fathers >=95 years, n=1,339) and disease alleles were similar, with an additional association with HDL cholesterol (p=5.7x10-3). These results support a multiple protective factors model influencing lifespan and longevity (top 1% survival) in humans, with prominent roles for cardiovascular-related pathways. Several of these genetically influenced risks, including blood pressure and tobacco exposure, are potentially modifiable.
Abstract.
Author URL.
Ruth KS, Bennett CE, Schoemaker MJ, Weedon MN, Swerdlow AJ, Murray A (2016). Length of FMR1 repeat alleles within the normal range does not substantially affect the risk of early menopause.
Hum Reprod,
31(10), 2396-2403.
Abstract:
Length of FMR1 repeat alleles within the normal range does not substantially affect the risk of early menopause.
STUDY QUESTION: is the length of FMR1 repeat alleles within the normal range associated with the risk of early menopause? SUMMARY ANSWER: the length of repeat alleles within the normal range does not substantially affect risk of early menopause. WHAT IS KNOWN ALREADY: There is a strong, well-established relationship between length of premutation FMR1 alleles and age at menopause, suggesting that this relationship could continue into the normal range. Within the normal range, there is conflicting evidence; differences in ovarian reserve have been identified with FMR1 repeat allele length, but a recent population-based study did not find any association with age at menopause as a quantitative trait. STUDY DESIGN, SIZE, DURATION: We analysed cross-sectional baseline survey data collected at recruitment from 2004 to 2010 from a population-based, prospective epidemiological cohort study of >110 000 women to investigate whether repeat allele length was associated with early menopause. PARTICIPANTS/MATERIALS, SETTING, METHOD: We included 4333 women from the Breakthrough Generations Study (BGS), of whom 2118 were early menopause cases (menopause under 46 years) and 2215 were controls. We analysed the relationship between length of FMR1 alleles and early menopause using logistic regression with allele length as continuous and categorical variables. We also conducted analyses with the outcome age at menopause as a quantitative trait as well as appropriate sensitivity and exploratory analyses. MAIN RESULTS AND THE ROLE OF CHANCE: There was no association of the shorter or longer FMR1 allele or their combined genotype with the clinically relevant end point of early menopause in our main analysis. Likewise, there were no associations with age at menopause as a quantitative trait in our secondary analysis. LIMITATIONS, REASONS FOR CAUTION: Women with homozygous alleles in the normal range may have undetected FMR1 premutation alleles, although there was no evidence to suggest this. We estimate minor dilution of risk of early menopause from the likely inclusion of some women with menopause at over 45 years in the early menopause cases due to age-rounding bias in self-reports. WIDER IMPLICATIONS OF THE FINDINGS: There is no robust evidence in this large study that variation within the normal range of FMR1 repeat alleles influences timing of menopause in the general population, which contradicts findings from some earlier, mainly smaller studies. The FMR1 CGG repeat polymorphism in the normal range is unlikely to contribute to genetic susceptibility to early menopause. STUDY FUNDING/COMPETING INTERESTS: We thank Breast Cancer Now and the Institute of Cancer Research for funding the BGS. The Institute of Cancer Research acknowledges NHS funding to the NIHR Biomedical Research Centre. The study was funded by the Wellcome Trust (grant number 085943). There are no competing interests. TRIAL REGISTRATION NUMBER: Not applicable.
Abstract.
Author URL.
Ruth KS, Murray A (2016). Lessons from Genome-Wide Association Studies in Reproductive Medicine: Menopause.
Semin Reprod Med,
34(4), 215-223.
Abstract:
Lessons from Genome-Wide Association Studies in Reproductive Medicine: Menopause.
In recent years, common genetic variants have been identified by genome-wide association studies (GWASs) that have led to the detection of 44 genetic loci associated with approximately 6% of common variation in age at natural menopause. In the latest GWAS, doubling the sample size to approximately 70,000 women more than doubled the number of signals identified, from 17 to 56. In addition, low-frequency coding variants (< 5% minor allele frequency), with relatively large effect sizes, have been identified in two genes, by analyzing genome-wide exome data. GWAS has been very successful in identifying novel biological pathways involved in reproductive aging. Approximately two-thirds of the loci reported so far include genes involved in DNA damage response (DDR), highlighting the importance of this pathway in determining oocyte reserve. In addition, GWAS demonstrates that the hypothalamic-pituitary axis is involved in menopause timing as well as puberty timing, showing the first genetic link between timing of the start and end of reproductive life. Genetic variants have been used to explore the causal relationships between menopause timing and breast cancer. These studies demonstrate that for a 1 year increase in menopause age, there is a 6% increase in breast cancer risk, a value approximately double the estimate from epidemiological studies. Prolonged exposure to estrogen during reproductive life is the likely mechanism, rather than a direct effect of DDR variants on cancer risk. Further work is needed to determine the mechanism for the effect of each variant identified by GWAS and more variants will undoubtedly be discovered as sample sizes increase, denser single nucleotide polymorphism arrays and reference genomes are used, and populations from diverse ethnic groups are studied.
Abstract.
Author URL.
Wood AR, Tyrrell J, Beaumont R, Jones SE, Tuke MA, Ruth KS, GIANT consortium, Yaghootkar H, Freathy RM, Murray A, et al (2016). Variants in the FTO and CDKAL1 loci have recessive effects on risk of obesity and type 2 diabetes, respectively.
Diabetologia,
59(6), 1214-1221.
Abstract:
Variants in the FTO and CDKAL1 loci have recessive effects on risk of obesity and type 2 diabetes, respectively.
AIMS/HYPOTHESIS: Genome-wide association (GWA) studies have identified hundreds of common genetic variants associated with obesity and type 2 diabetes. These studies have usually focused on additive association tests. Identifying deviations from additivity may provide new biological insights and explain some of the missing heritability for these diseases. METHODS: We performed a GWA study using a dominance deviation model for BMI, obesity (29,925 cases) and type 2 diabetes (4,040 cases) in 120,286 individuals of British ancestry from the UK Biobank study. We also investigated whether single nucleotide polymorphisms previously shown to be associated with these traits showed any enrichment for departures from additivity. RESULTS: Known obesity-associated variants in FTO showed strong evidence of deviation from additivity (p DOMDEV = 3 × 10(-5)) through a recessive effect of the allele associated with higher BMI. The average BMI of individuals carrying zero, one or two BMI-raising alleles was 27.27 (95% CI 27.22, 27.31) kg/m(2), 27.54 (95% CI 27.50, 27.58) kg/m(2) and 28.07 (95% CI 28.00, 28.14) kg/m(2), respectively. A similar effect was observed in 105,643 individuals from the GIANT Consortium (p DOMDEV = 0.003; meta-analysis p DOMDEV = 1 × 10(-7)). For type 2 diabetes, we detected a recessive effect (p DOMDEV = 5 × 10(-4)) at CDKAL1. Relative to homozygous non-risk allele carriers, homozygous risk allele carriers had an OR of 1.48 (95% CI 1.32, 1.65), while the heterozygous group had an OR of 1.06 (95% CI 0.99, 1.14), a result consistent with that of a previous study. We did not identify any novel associations at genome-wide significance. CONCLUSIONS/INTERPRETATION: Although we found no evidence of widespread non-additive genetic effects contributing to obesity and type 2 diabetes risk, we did find robust examples of recessive effects at the FTO and CDKAL1 loci. ACCESS TO RESEARCH MATERIALS: Summary statistics are available at www.t2diabetesgenes.org and by request (a.r.wood@exeter.ac.uk). All underlying data are available on application from the UK Biobank.
Abstract.
Author URL.
Day FR, Ruth KS, Thompson DJ, Lunetta KL, Pervjakova N, Chasman DI, Stolk L, Finucane HK, Sulem P, Bulik-Sullivan B, et al (2015). Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair.
Nat Genet,
47(11), 1294-1303.
Abstract:
Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair.
Menopause timing has a substantial impact on infertility and risk of disease, including breast cancer, but the underlying mechanisms are poorly understood. We report a dual strategy in ∼70,000 women to identify common and low-frequency protein-coding variation associated with age at natural menopause (ANM). We identified 44 regions with common variants, including two regions harboring additional rare missense alleles of large effect. We found enrichment of signals in or near genes involved in delayed puberty, highlighting the first molecular links between the onset and end of reproductive lifespan. Pathway analyses identified major association with DNA damage response (DDR) genes, including the first common coding variant in BRCA1 associated with any complex trait. Mendelian randomization analyses supported a causal effect of later ANM on breast cancer risk (∼6% increase in risk per year; P = 3 × 10(-14)), likely mediated by prolonged sex hormone exposure rather than DDR mechanisms.
Abstract.
Author URL.
Lunetta KL, Day FR, Sulem P, Ruth KS, Tung JY, Hinds DA, Esko T, Elks CE, Altmaier E, He C, et al (2015). Rare coding variants and X-linked loci associated with age at menarche.
Nat Commun,
6Abstract:
Rare coding variants and X-linked loci associated with age at menarche.
More than 100 loci have been identified for age at menarche by genome-wide association studies; however, collectively these explain only ∼3% of the trait variance. Here we test two overlooked sources of variation in 192,974 European ancestry women: low-frequency protein-coding variants and X-chromosome variants. Five missense/nonsense variants (in ALMS1/LAMB2/TNRC6A/TACR3/PRKAG1) are associated with age at menarche (minor allele frequencies 0.08-4.6%; effect sizes 0.08-1.25 years per allele; P
Abstract.
Author URL.