Journal articles
Marzi SJ, Schilder BM, Nott A, Frigerio CS, Willaime-Morawek S, Bucholc M, Hanger DP, James C, Lewis PA, Lourida I, et al (2023). Artificial intelligence for neurodegenerative experimental models.
Alzheimers DementAbstract:
Artificial intelligence for neurodegenerative experimental models.
INTRODUCTION: Experimental models are essential tools in neurodegenerative disease research. However, the translation of insights and drugs discovered in model systems has proven immensely challenging, marred by high failure rates in human clinical trials. METHODS: Here we review the application of artificial intelligence (AI) and machine learning (ML) in experimental medicine for dementia research. RESULTS: Considering the specific challenges of reproducibility and translation between other species or model systems and human biology in preclinical dementia research, we highlight best practices and resources that can be leveraged to quantify and evaluate translatability. We then evaluate how AI and ML approaches could be applied to enhance both cross-model reproducibility and translation to human biology, while sustaining biological interpretability. DISCUSSION: AI and ML approaches in experimental medicine remain in their infancy. However, they have great potential to strengthen preclinical research and translation if based upon adequate, robust, and reproducible experimental data. HIGHLIGHTS: There are increasing applications of AI in experimental medicine. We identified issues in reproducibility, cross-species translation, and data curation in the field. Our review highlights data resources and AI approaches as solutions. Multi-omics analysis with AI offers exciting future possibilities in drug discovery.
Abstract.
Author URL.
Beltran-Lobo P, Reid MJ, Jimenez-Sanchez M, Verkhratsky A, Perez-Nievas BG, Noble W (2023). Astrocyte adaptation in Alzheimer's disease: a focus on astrocytic P2X7R.
Essays Biochem,
67(1), 119-130.
Abstract:
Astrocyte adaptation in Alzheimer's disease: a focus on astrocytic P2X7R.
Astrocytes are key homeostatic and defensive cells of the central nervous system (CNS). They undertake numerous functions during development and in adulthood to support and protect the brain through finely regulated communication with other cellular elements of the nervous tissue. In Alzheimer's disease (AD), astrocytes undergo heterogeneous morphological, molecular and functional alterations represented by reactive remodelling, asthenia and loss of function. Reactive astrocytes closely associate with amyloid β (Aβ) plaques and neurofibrillary tangles in advanced AD. The specific contribution of astrocytes to AD could potentially evolve along the disease process and includes alterations in their signalling, interactions with pathological protein aggregates, metabolic and synaptic impairments. In this review, we focus on the purinergic receptor, P2X7R, and discuss the evidence that P2X7R activation contributes to altered astrocyte functions in AD. Expression of P2X7R is increased in AD brain relative to non-demented controls, and animal studies have shown that P2X7R antagonism improves cognitive and synaptic impairments in models of amyloidosis and tauopathy. While P2X7R activation can induce inflammatory signalling pathways, particularly in microglia, we focus here specifically on the contributions of astrocytic P2X7R to synaptic changes and protein aggregate clearance in AD, highlighting cell-specific roles of this purinoceptor activation that could be targeted to slow disease progression.
Abstract.
Author URL.
Beltran-Lobo P, Hughes M, Troakes C, Croft C, Rupawala H, Jutzi D, Ruepp M-D, Jimenez-Sanchez M, Perkinton M, Kassiou M, et al (2023). P2X7R influences tau aggregate burden in human tauopathies and shows distinct signalling in microglia and astrocytes.
Brain, Behavior, and Immunity,
114, 414-429.
Abstract:
P2X7R influences tau aggregate burden in human tauopathies and shows distinct signalling in microglia and astrocytes
The purinoceptor P2X7R is a promising therapeutic target for tauopathies, including Alzheimer’s disease (AD). Pharmacological inhibition or genetic knockdown of P2X7R ameliorates cognitive deficits and reduces pathological tau burden in mice that model aspects of tauopathy, including mice expressing mutant human frontotemporal dementia (FTD)-causing forms of tau. However, disagreements remain over which glial cell types express P2X7R and therefore the mechanism of action is unresolved. Here, we show that P2X7R protein levels increase in human AD post-mortem brain, in agreement with an upregulation of P2RX7 mRNA observed in transcriptome profiles from the AMP-AD consortium. P2X7R protein increases mirror advancing Braak stage and coincide with synapse loss. Using RNAScope we detect P2RX7 mRNA in microglia and astrocytes in human AD brain, including in the vicinity of senile plaques. In cultured microglia, P2X7R activation modulates the NLRP3 inflammasome pathway by promoting the formation of active complexes and release of IL-1β. In astrocytes, P2X7R activates NFB signalling and increases production of the cytokines CCL2, CXCL1 and IL-6 together with the acute phase protein Lcn2. To further explore the role of P2X7R in a disease-relevant context, we expressed wild-type or FTD-causing mutant forms of tau in mouse organotypic brain slice cultures. Inhibition of P2X7R reduced insoluble tau levels without altering soluble tau phosphorylation or synaptic localisation, suggesting a non-cell autonomous role of glial P2X7R on pathological tau aggregation. These findings support further investigations into the cell-type specific effects of P2X7R-targeting therapies in tauopathies.
Abstract.
Matafora V, Gorb A, Yang F, Noble W, Bachi A, Perez-Nievas BG, Jimenez-Sanchez M (2023). Proteomics of the astrocyte secretome reveals changes in their response to soluble oligomeric Aβ.
J Neurochem,
166(2), 346-366.
Abstract:
Proteomics of the astrocyte secretome reveals changes in their response to soluble oligomeric Aβ.
Astrocytes associate with amyloid plaques in Alzheimer's disease (AD). Astrocytes react to changes in the brain environment, including increasing concentrations of amyloid-β (Aβ). However, the precise response of astrocytes to soluble small Aβ oligomers at concentrations similar to those present in the human brain has not been addressed. In this study, we exposed astrocytes to media from neurons that express the human amyloid precursor protein (APP) transgene with the double Swedish mutation (APPSwe), and which contains APP-derived fragments, including soluble human Aβ oligomers. We then used proteomics to investigate changes in the astrocyte secretome. Our data show dysregulated secretion of astrocytic proteins involved in the extracellular matrix and cytoskeletal organization and increase secretion of proteins involved in oxidative stress responses and those with chaperone activity. Several of these proteins have been identified in previous transcriptomic and proteomic studies using brain tissue from human AD and cerebrospinal fluid (CSF). Our work highlights the relevance of studying astrocyte secretion to understand the brain response to AD pathology and the potential use of these proteins as biomarkers for the disease.
Abstract.
Author URL.
Noble W, Hanger DP (2023). Trimming away tau in neurodegeneration.
Science (New York, N.Y.),
381(6656), 377-378.
Abstract:
Trimming away tau in neurodegeneration.
Tau quality control by tripartite motif 11 (TRIM11) protects neurons in mice.
Abstract.
Rupawala H, Shah K, Davies C, Rose J, Colom-Cadena M, Peng X, Granat L, Aljuhani M, Mizuno K, Troakes C, et al (2022). Cysteine string protein alpha accumulates with early pre-synaptic dysfunction in Alzheimer's disease.
Brain Commun,
4(4).
Abstract:
Cysteine string protein alpha accumulates with early pre-synaptic dysfunction in Alzheimer's disease.
In Alzheimer's disease, synapse loss causes memory and cognitive impairment. However, the mechanisms underlying synaptic degeneration in Alzheimer's disease are not well understood. In the hippocampus, alterations in the level of cysteine string protein alpha, a molecular co-chaperone at the pre-synaptic terminal, occur prior to reductions in synaptophysin, suggesting that it is a very sensitive marker of synapse degeneration in Alzheimer's. Here, we identify putative extracellular accumulations of cysteine string alpha protein, which are proximal to beta-amyloid deposits in post-mortem human Alzheimer's brain and in the brain of a transgenic mouse model of Alzheimer's disease. Cysteine string protein alpha, at least some of which is phosphorylated at serine 10, accumulates near the core of beta-amyloid deposits and does not co-localize with hyperphosphorylated tau, dystrophic neurites or glial cells. Using super-resolution microscopy and array tomography, cysteine string protein alpha was found to accumulate to a greater extent than other pre-synaptic proteins and at a comparatively great distance from the plaque core. This indicates that cysteine string protein alpha is most sensitive to being released from pre-synapses at low concentrations of beta-amyloid oligomers. Cysteine string protein alpha accumulations were also evident in other neurodegenerative diseases, including some fronto-temporal lobar dementias and Lewy body diseases, but only in the presence of amyloid plaques. Our findings are consistent with suggestions that pre-synapses are affected early in Alzheimer's disease, and they demonstrate that cysteine string protein alpha is a more sensitive marker for early pre-synaptic dysfunction than traditional synaptic markers. We suggest that cysteine string protein alpha should be used as a pathological marker for early synaptic disruption caused by beta-amyloid.
Abstract.
Author URL.
Reid MJ, Noble W, Perez-Nievas BG (2022). Differential rates of internalisation and effects on reactivity of postmortem human tau in human astrocytes.
Alzheimer's and Dementia,
18(S4).
Abstract:
Differential rates of internalisation and effects on reactivity of postmortem human tau in human astrocytes
Background: Highly phosphorylated tau aggregates emerge in affected areas of human tauopathy brain as disease progresses as a result of prion-like spread and/or replication of seeds. Evidence suggests that astrocytes may influence tau spread. However, the efficiency of uptake of disease-associated tau species is not well defined, nor are the effects of tau uptake on astrocyte reactivity and function. We are investigating tau uptake in human astrocytes, and how resulting changes in their reactivity and functions affect their support for human neurons in vitro. Method: Human iPSC-derived astrocytes were established, and their gene and protein expression profiles characterised. Aggregated tau was isolated from human postmortem Alzheimer’s disease (AD) brain. AD brain tau and corresponding extracts from control (CTRL) human brain were spiked into iPSC-astrocyte cultures and the efficiency of tau uptake was measured, in parallel with assessment of reactivity markers. Mechanisms of tau uptake and its intracellular processing were investigated. Astrocyte conditioned media was collected and applied to iPSC derived cortical neurons to determine the impact of tau-induced astrocyte changes on measures of neuron health. Result: iPSC-derived astrocytes express mature astrocyte markers. Aggregated tau from AD brain was readily internalised by these cells. Morphological, gene expression and protein expression changes were detected, suggesting that exposure to AD-brain tau is sufficient to induce reactive response in these astrocytes. Variations in the rate and extent of uptake, and in markers of reactivity, were observed that reflect heterogeneity between different AD cases. Preliminary data indicates that cells may degrade internalised tau aggregates via lysosomal pathways and that tau-induced astrocyte reactivity negatively impacts neuron health. Conclusion: Our data shows that human astrocytes readily internalise AD brain-derived tau aggregates, inducing changes in astrocyte reactivity and function, related to characteristics of the tau, that are detrimental to neurons. This supports an emerging body of evidence that astrocytic tau may influence neurodegeneration in AD.
Abstract.
Gomez-Suaga P, Mórotz GM, Markovinovic A, Martín-Guerrero SM, Preza E, Arias N, Mayl K, Aabdien A, Gesheva V, Nishimura A, et al (2022). Disruption of ER-mitochondria tethering and signalling in C9orf72-associated amyotrophic lateral sclerosis and frontotemporal dementia.
Aging Cell,
21(2).
Abstract:
Disruption of ER-mitochondria tethering and signalling in C9orf72-associated amyotrophic lateral sclerosis and frontotemporal dementia.
Hexanucleotide repeat expansions in C9orf72 are the most common cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The mechanisms by which the expansions cause disease are not properly understood but a favoured route involves its translation into dipeptide repeat (DPR) polypeptides, some of which are neurotoxic. However, the precise targets for mutant C9orf72 and DPR toxicity are not fully clear, and damage to several neuronal functions has been described. Many of these functions are regulated by signalling between the endoplasmic reticulum (ER) and mitochondria. ER-mitochondria signalling requires close physical contacts between the two organelles that are mediated by the VAPB-PTPIP51 'tethering' proteins. Here, we show that ER-mitochondria signalling and the VAPB-PTPIP51 tethers are disrupted in neurons derived from induced pluripotent stem (iPS) cells from patients carrying ALS/FTD pathogenic C9orf72 expansions and in affected neurons in mutant C9orf72 transgenic mice. In these mice, disruption of the VAPB-PTPIP51 tethers occurs prior to disease onset suggesting that it contributes to the pathogenic process. We also show that neurotoxic DPRs disrupt the VAPB-PTPIP51 interaction and ER-mitochondria contacts and that this may involve activation of glycogen synthase kinases-3β (GSK3β), a known negative regulator of VAPB-PTPIP51 binding. Finally, we show that these DPRs disrupt delivery of Ca2+ from ER stores to mitochondria, which is a primary function of the VAPB-PTPIP51 tethers. This delivery regulates a number of key neuronal functions that are damaged in ALS/FTD including bioenergetics, autophagy and synaptic function. Our findings reveal a new molecular target for mutant C9orf72-mediated toxicity.
Abstract.
Author URL.
Hartopp N, Lau DHW, Martin-Guerrero SM, Markovinovic A, Mórotz GM, Greig J, Glennon EB, Troakes C, Gomez-Suaga P, Noble W, et al (2022). Disruption of the VAPB-PTPIP51 ER-mitochondria tethering proteins in post-mortem human amyotrophic lateral sclerosis.
Front Cell Dev Biol,
10Abstract:
Disruption of the VAPB-PTPIP51 ER-mitochondria tethering proteins in post-mortem human amyotrophic lateral sclerosis.
Signaling between the endoplasmic reticulum (ER) and mitochondria regulates many neuronal functions that are perturbed in amyotrophic lateral sclerosis (ALS) and perturbation to ER-mitochondria signaling is seen in cell and transgenic models of ALS. However, there is currently little evidence that ER-mitochondria signaling is altered in human ALS. ER-mitochondria signaling is mediated by interactions between the integral ER protein VAPB and the outer mitochondrial membrane protein PTPIP51 which act to recruit and "tether" regions of ER to the mitochondrial surface. The VAPB-PTPI51 tethers are now known to regulate a number of ER-mitochondria signaling functions. These include delivery of Ca2+ from ER stores to mitochondria, mitochondrial ATP production, autophagy and synaptic activity. Here we investigate the VAPB-PTPIP51 tethers in post-mortem control and ALS spinal cords. We show that VAPB protein levels are reduced in ALS. Proximity ligation assays were then used to quantify the VAPB-PTPIP51 interaction in spinal cord motor neurons in control and ALS cases. These studies revealed that the VAPB-PTPIP51 tethers are disrupted in ALS. Thus, we identify a new pathogenic event in post-mortem ALS.
Abstract.
Author URL.
Pang CCC, Sørensen MH, Lee K, Luk KC, Trojanowski JQ, Lee VMY, Noble W, Chang RCC (2022). Investigating key factors underlying neurodegeneration linked to alpha-synuclein spread.
Neuropathol Appl Neurobiol,
48(6).
Abstract:
Investigating key factors underlying neurodegeneration linked to alpha-synuclein spread.
AIMS: it has long been considered that accumulation of pathological alpha-synuclein (aSyn) leads to synaptic/neuronal loss which then results in behavioural and cognitive dysfunction. To investigate this claim, we investigated effects downstream of aSyn preformed fibrils (PFFs) and 6-hydroxydopamine (6-OHDA), because aSyn PFFs induce spreading/accumulation of aSyn, and 6-OHDA rapidly causes local neuronal loss. METHODS: We injected mouse aSyn PFFs into the medial forebrain bundle (MFB) of Sprague-Dawley rats. We investigated spread of pathological aSyn, phosphorylation of aSyn and tau, oxidative stress, synaptic/neuronal loss and cognitive dysfunction 60, 90 and 120 days after injection. Similarly, we injected 6-OHDA into the MFB and examined the same parameters 1 and 3 weeks after injection. RESULTS: Following aSyn PFF injection, phosphorylated aSyn was found distant from the injection site in the hippocampus and frontal cortex. However, despite neuron loss being evident close to the site of injection in the substantia nigra at 120 days post injection, there were no other neurodegeneration-associated features associated with aSyn including synaptic loss. In contrast, 6-OHDA caused severe neuronal loss in the substantia nigra at 3 weeks post injection that was accompanied by phosphorylation of aSyn and tau, oxidative stress, loss of synaptic proteins, cognitive and motor dysfunction. CONCLUSIONS: Our results demonstrate that spread/replication and slow accumulation of pathological aSyn may not be sufficient to induce neurodegenerative changes. In contrast, oxidative stress responses in addition to aSyn accumulation were associated with other Parkinson's disease (PD)-associated abnormalities and cognitive dysfunction. Our results may be important when considering why only some PD patients develop dementia.
Abstract.
Author URL.
Martín-Guerrero SM, Markovinovic A, Mórotz GM, Salam S, Noble W, Miller CCJ (2022). Targeting ER-Mitochondria Signaling as a Therapeutic Target for Frontotemporal Dementia and Related Amyotrophic Lateral Sclerosis.
Front Cell Dev Biol,
10Abstract:
Targeting ER-Mitochondria Signaling as a Therapeutic Target for Frontotemporal Dementia and Related Amyotrophic Lateral Sclerosis.
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two major neurodegenerative diseases. FTD is the second most common cause of dementia and ALS is the most common form of motor neuron disease. These diseases are now known to be linked. There are no cures or effective treatments for FTD or ALS and so new targets for therapeutic intervention are required but this is hampered by the large number of physiological processes that are damaged in FTD/ALS. Many of these damaged functions are now known to be regulated by signaling between the endoplasmic reticulum (ER) and mitochondria. This signaling is mediated by "tethering" proteins that serve to recruit ER to mitochondria. One tether strongly associated with FTD/ALS involves an interaction between the ER protein VAPB and the mitochondrial protein PTPIP51. Recent studies have shown that ER-mitochondria signaling is damaged in FTD/ALS and that this involves breaking of the VAPB-PTPIP51 tethers. Correcting disrupted tethering may therefore correct many other downstream damaged features of FTD/ALS. Here, we review progress on this topic with particular emphasis on targeting of the VAPB-PTPIP51 tethers as a new drug target.
Abstract.
Author URL.
Mórotz GM, Martín-Guerrero SM, Markovinovic A, Paillusson S, Russell MRG, Machado PMP, Fleck RA, Noble W, Miller CCJ (2022). The PTPIP51 coiled-coil domain is important in VAPB binding, formation of ER-mitochondria contacts and IP3 receptor delivery of Ca2+ to mitochondria.
Front Cell Dev Biol,
10Abstract:
The PTPIP51 coiled-coil domain is important in VAPB binding, formation of ER-mitochondria contacts and IP3 receptor delivery of Ca2+ to mitochondria.
Signaling between the endoplasmic reticulum (ER) and mitochondria regulates a number of fundamental physiological processes. This signaling involves close physical contacts between the two organelles that are mediated by the VAPB-PTPIP51 ″tethering" proteins. The VAPB-PTPIP51 tethers facilitate inositol 1,4,5-trisphosphate (IP3) receptor delivery of Ca2+ from ER to mitochondria. Damage to the tethers is seen in Alzheimer's disease, Parkinson's disease and frontotemporal dementia with related amyotrophic lateral sclerosis (FTD/ALS). Understanding the mechanisms that regulate the VAPB-PTPIP51 interaction thus represents an important area of research. Recent studies suggest that an FFAT motif in PTPIP51 is key to its binding to VAPB but this work relies on in vitro studies with short peptides. Cellular studies to support this notion with full-length proteins are lacking. Here we address this issue. Immunoprecipitation assays from transfected cells revealed that deletion of the PTPIP51 FFAT motif has little effect on VAPB binding. However, mutation and deletion of a nearby coiled-coil domain markedly affect this binding. Using electron microscopy, we then show that deletion of the coiled-coil domain but not the FFAT motif abrogates the effect of PTPIP51 on ER-mitochondria contacts. Finally, we show that deletion of the coiled-coil domain but not the FFAT motif abrogates the effect of PTPIP51 on the IP3 receptor-mediated delivery of Ca2+ to mitochondria. Thus, the coiled-coil domain is essential for PTPIP51 ER-mitochondria signaling functions.
Abstract.
Author URL.
Pollack SJ, Dakkak D, Guo T, Gómez-Suaga P, Noble W, Hanger DP (2022). The presence of disease-associated tau leads to adverse effects on the autophagy and endolysosomal pathway in a cell model of tauopathy.
Alzheimer's and Dementia,
18(S4).
Abstract:
The presence of disease-associated tau leads to adverse effects on the autophagy and endolysosomal pathway in a cell model of tauopathy
Background: Dysfunctions in the autophagy and endolysosomal pathways have been reported in Alzheimer’s Disease and related tauopathies. The presence of disease-associated tau itself may play a role in damaging these pathways leading to its altered clearance. Minimal expression of a disease-associated truncated tau species (Tau35) in mice results in a progressive tauopathy phenotype, including increased tau phosphorylation, cognitive and behavioural abnormalities and impaired protein clearance. In this study, we sought to explore the effects of Tau35 on the autophagy and endolysosomal pathway in cultured cells expressing Tau35 and from Tau35 mice. Method: Chinese hamster ovary (CHO) cells stably expressing Tau35 (CHO-Tau35) or full-length human 2N4R tau (CHO-FL) were generated. Primary cortical neurons from Tau35 transgenic and wild-type mice were isolated and cultured for 14 days in vitro (DIV). Cells were fixed for immunocytochemistry or lysed to isolate protein/RNA for western blotting and RT-qPCR to detect the effect of Tau35 expression on autophagy and lysosomal-related proteins and genes. Result: CHO-Tau35 cells exhibited a marked reduction in several autophagy and lysosomal-related markers, including LC3-II, LAMP2 and cathepsin D. CHO-Tau35 cells also accumulated lipid droplets and showed disruptions in mammalian target of rapamycin complex 1 (mTORC1) activity and autophagic flux. Moreover, Tau35 expression also resulted in alterations in early endocytic markers, including EEA1. Similar reductions in autophagic and endosomal markers were observed in primary cortical neurons cultured from Tau35 mice. Notably, the nuclear translocation of transcription factor EB (TFEB), a key mediator of lysosomal biogenesis, as well as the transcription of several TFEB-target genes, was significantly reduced in both CHO-FL and CHO-Tau35 cells. Conclusion: Our findings suggest that disease-associated truncated tau damages the clearance of cellular proteins and reduces TFEB-mediated lysosomal biogenesis. Investigating whether autophagy is disrupted due to tau-induced lysosomal dysfunction may lead to the identification of novel therapeutic targets for dementia.
Abstract.
Perez-Nievas BG, Johnson L, Beltran-Lobo P, Hughes MM, Gammallieri L, Tarsitano F, Myszczynska MA, Vazquez-Villasenor I, Jimenez-Sanchez M, Troakes C, et al (2021). Astrocytic C-X-C motif chemokine ligand-1 mediates β-amyloid-induced synaptotoxicity.
J Neuroinflammation,
18(1).
Abstract:
Astrocytic C-X-C motif chemokine ligand-1 mediates β-amyloid-induced synaptotoxicity.
BACKGROUND: Pathological interactions between β-amyloid (Aβ) and tau drive synapse loss and cognitive decline in Alzheimer's disease (AD). Reactive astrocytes, displaying altered functions, are also a prominent feature of AD brain. This large and heterogeneous population of cells are increasingly recognised as contributing to early phases of disease. However, the contribution of astrocytes to Aβ-induced synaptotoxicity in AD is not well understood. METHODS: We stimulated mouse and human astrocytes with conditioned medium containing concentrations and species of human Aβ that mimic those in human AD brain. Medium from stimulated astrocytes was collected and immunodepleted of Aβ before being added to naïve rodent or human neuron cultures. A cytokine, identified in unbiased screens of stimulated astrocyte media and in postmortem human AD brain lysates was also applied to neurons, including those pre-treated with a chemokine receptor antagonist. Tau mislocalisation, synaptic markers and dendritic spine numbers were measured in cultured neurons and organotypic brain slice cultures. RESULTS: We found that conditioned medium from stimulated astrocytes induces exaggerated synaptotoxicity that is recapitulated following spiking of neuron culture medium with recombinant C-X-C motif chemokine ligand-1 (CXCL1), a chemokine upregulated in AD brain. Antagonism of neuronal C-X-C motif chemokine receptor 2 (CXCR2) prevented synaptotoxicity in response to CXCL1 and Aβ-stimulated astrocyte secretions. CONCLUSIONS: Our data indicate that astrocytes exacerbate the synaptotoxic effects of Aβ via interactions of astrocytic CXCL1 and neuronal CXCR2 receptors, highlighting this chemokine-receptor pair as a novel target for therapeutic intervention in AD.
Abstract.
Author URL.
Staurenghi E, Cerrato V, Gamba P, Testa G, Giannelli S, Leoni V, Caccia C, Buffo A, Noble W, Perez-Nievas BG, et al (2021). Oxysterols present in Alzheimer's disease brain induce synaptotoxicity by activating astrocytes: a major role for lipocalin-2.
Redox Biol,
39Abstract:
Oxysterols present in Alzheimer's disease brain induce synaptotoxicity by activating astrocytes: a major role for lipocalin-2.
Among Alzheimer's disease (AD) brain hallmarks, the presence of reactive astrocytes was demonstrated to correlate with neuronal loss and cognitive deficits. Evidence indeed supports the role of reactive astrocytes as mediators of changes in neurons, including synapses. However, the complexity and the outcomes of astrocyte reactivity are far from being completely elucidated. Another key role in AD pathogenesis is played by alterations in brain cholesterol metabolism. Oxysterols (cholesterol oxidation products) are crucial for brain cholesterol homeostasis, and we previously demonstrated that changes in the brain levels of various oxysterols correlate with AD progression. Moreover, oxysterols have been shown to contribute to various pathological mechanisms involved in AD pathogenesis. In order to deepen the role of oxysterols in AD, we investigated whether they could contribute to astrocyte reactivity, and consequently impact on neuronal health. Results showed that oxysterols present in mild or severe AD brains induce a clear morphological change in mouse primary astrocytes, accompanied by the upregulation of some reactive astrocyte markers, including lipocalin-2 (Lcn2). Moreover, astrocyte conditioned media analysis revealed a significant increase in the release of Lcn2, cytokines, and chemokines in response to oxysterols. A significant reduction of postsynaptic density protein 95 (PSD95) and a concurrent increase in cleaved caspase-3 protein levels have been demonstrated in neurons co-cultured with oxysterol-treated astrocytes, pointing out that mediators released by astrocytes have an impact on neurons. Among these mediators, Lcn2 has been demonstrated to play a major role on synapses, affecting neurite morphology and decreasing dendritic spine density. These data demonstrated that oxysterols present in the AD brain promote astrocyte reactivity, determining the release of several mediators that affect neuronal health and synapses. Lcn2 has been shown to exert a key role in mediating the synaptotoxic effect of oxysterol-treated astrocytes.
Abstract.
Author URL.
Derkinderen P, Rolli-Derkinderen M, Chapelet G, Neunlist M, Noble W (2021). Tau in the gut, does it really matter?.
J Neurochem,
158(2), 94-104.
Abstract:
Tau in the gut, does it really matter?
The enteric nervous system plays a critical role in the regulation of gastrointestinal tract functions and is often referred to as the 'second brain' because it shares many features with the central nervous system. These similarities include among others a large panel of neurotransmitters, a large population of glial cells and a susceptibility to neurodegeneration. This close homology between the central and enteric nervous systems suggests that a disease process affecting the central nervous system could also involve its enteric counterpart. This was already documented in Parkinson's disease, the most common synucleinopathy, in which alpha-synuclein deposits are reported in the enteric nervous system in the vast majority of patients. Tau is another key protein involved in neurodegenerative disorders of the brain. Whether changes in tau also occur in the enteric nervous system during gut or brain disorders has just begun to be explored. The scope of the present article is therefore to review existing studies on the expression and phosphorylation pattern of tau in the enteric nervous system under physiological and pathological conditions and to discuss the possible occurrence of 'enteric tauopathies'.
Abstract.
Author URL.
Derkinderen P, Noble W, Neunlist M, Rolli-Derkinderen M (2021). Upregulation of enteric alpha-synuclein as a possible link between inflammatory bowel disease and Parkinson's disease.
Gut,
70(10), 2010-2012.
Author URL.
Reid MJ, Beltran-Lobo P, Johnson L, Perez-Nievas BG, Noble W (2020). Astrocytes in Tauopathies.
Front Neurol,
11Abstract:
Astrocytes in Tauopathies.
Tauopathies are a group of neurodegenerative diseases characterized by the progressive accumulation across the brain of hyperphosphorylated aggregates of the microtubule-associated protein tau that vary in isoform composition, structural conformation and localization. Tau aggregates are most commonly deposited within neurons but can show differential association with astrocytes, depending on the disease. Astrocytes, the most abundant neural cells in the brain, play a major role in synapse and neuronal function, and are a key component of the glymphatic system and blood brain barrier. However, their contribution to tauopathy progression is not fully understood. Here we present a brief overview of the association of tau with astrocytes in tauopathies. We discuss findings that support a role for astrocytes in the uptake and spread of pathological tau, and we describe how alterations to astrocyte phenotype in tauopathies may cause functional alterations that impedes their ability to support neurons and/or cause neurotoxicity. The research reviewed here further highlights the importance of considering non-neuronal cells in neurodegeneration and suggests that astrocyte-directed targets that may have utility for therapeutic intervention in tauopathies.
Abstract.
Author URL.
Glennon EB, Lau DH-W, Gabriele RMC, Taylor MF, Troakes C, Opie-Martin S, Elliott C, Killick R, Hanger DP, Perez-Nievas BG, et al (2020). Bridging Integrator-1 protein loss in Alzheimer's disease promotes synaptic tau accumulation and disrupts tau release.
Brain Commun,
2(1).
Abstract:
Bridging Integrator-1 protein loss in Alzheimer's disease promotes synaptic tau accumulation and disrupts tau release.
Polymorphisms associated with BIN1 confer the second greatest risk for developing late onset Alzheimer's disease. The biological consequences of this genetic variation are not fully understood, however BIN1 is a binding partner for tau. Tau is normally a highly soluble cytoplasmic protein, but in Alzheimer's disease tau is abnormally phosphorylated and accumulates at synapses to exert synaptotoxicity. The purpose of this study was to determine if alterations to BIN1 and tau in Alzheimer's disease promote the damaging redistribution of tau to synapses, as a mechanism by which BIN1 polymorphisms may increase risk of developing Alzheimer's disease. We show that BIN1 is lost from the cytoplasmic fraction of Alzheimer's disease cortex, and this is accompanied by the progressive mislocalization of phosphorylated tau to synapses. We confirmed proline 216 in tau as critical for tau interaction with the BIN1-SH3 domain and show that phosphorylation of tau disrupts this binding, suggesting that tau phosphorylation in Alzheimer's disease disrupts tau-BIN1 associations. Moreover, we show that BIN1 knockdown in rat primary neurons to mimic BIN1 loss in Alzheimer's disease brain, causes the damaging accumulation of phosphorylated tau at synapses and alterations in dendritic spine morphology. We also observed reduced release of tau from neurons upon BIN1 silencing, suggesting that BIN1 loss disrupts the function of extracellular tau. Together, these data indicate that polymorphisms associated with BIN1 that reduce BIN1 protein levels in the brain likely act synergistically with increased tau phosphorylation to increase risk of Alzheimer's disease by disrupting cytoplasmic tau-BIN1 interactions, promoting the damaging mis-sorting of phosphorylated tau to synapses to alter synapse structure, and by reducing the release of physiological forms of tau to disrupt tau function.
Abstract.
Author URL.
Noble W, Jimenez-Sanchez M, Perez-Nievas BG, Hanger DP (2020). Considerations for future tau-targeted therapeutics: can they deliver?.
Expert Opin Drug Discov,
15(3), 265-267.
Author URL.
Lau DHW, Paillusson S, Hartopp N, Rupawala H, Mórotz GM, Gomez-Suaga P, Greig J, Troakes C, Noble W, Miller CCJ, et al (2020). Disruption of endoplasmic reticulum-mitochondria tethering proteins in post-mortem Alzheimer's disease brain.
Neurobiol Dis,
143Abstract:
Disruption of endoplasmic reticulum-mitochondria tethering proteins in post-mortem Alzheimer's disease brain.
Signaling between the endoplasmic reticulum (ER) and mitochondria regulates a number of key neuronal functions, many of which are perturbed in Alzheimer's disease. Moreover, damage to ER-mitochondria signaling is seen in cell and transgenic models of Alzheimer's disease. However, as yet there is little evidence that ER-mitochondria signaling is altered in human Alzheimer's disease brains. ER-mitochondria signaling is mediated by interactions between the integral ER protein VAPB and the outer mitochondrial membrane protein PTPIP51 which act to recruit and "tether" regions of ER to the mitochondrial surface. The VAPB-PTPIP51 tethers are now known to regulate a number of ER-mitochondria signaling functions including delivery of Ca2+from ER stores to mitochondria, mitochondrial ATP production, autophagy and synaptic activity. Here we investigate the VAPB-PTPIP51 tethers in post-mortem control and Alzheimer's disease brains. Quantification of ER-mitochondria signaling proteins by immunoblotting revealed loss of VAPB and PTPIP51 in cortex but not cerebellum at end-stage Alzheimer's disease. Proximity ligation assays were used to quantify the VAPB-PTPIP51 interaction in temporal cortex pyramidal neurons and cerebellar Purkinje cell neurons in control, Braak stage III-IV (early/mid-dementia) and Braak stage VI (severe dementia) cases. Pyramidal neurons degenerate in Alzheimer's disease whereas Purkinje cells are less affected. These studies revealed that the VAPB-PTPIP51 tethers are disrupted in Braak stage III-IV pyramidal but not Purkinje cell neurons. Thus, we identify a new pathogenic event in post-mortem Alzheimer's disease brains. The implications of our findings for Alzheimer's disease mechanisms are discussed.
Abstract.
Author URL.
de Lataillade ADG, Lebouvier T, Noble W, Leclair-Visonneau L, Derkinderen P (2020). Enteric synucleinopathy: from trendy concept to real entity.
Free Neuropathology,
1Abstract:
Enteric synucleinopathy: from trendy concept to real entity.
An accumulating body of literature has emerged in the past 25 years to show that Parkinson’s disease (PD) is not only a disorder of the brain but also of the gastrointestinal tract and more generally of the gut-brain axis. Gastrointestinal symptoms occur in almost every PD patient at some point and in nearly every case examined pathologically autopsy studies find alpha-synuclein deposits, the pathological hallmarks of PD, in the enteric nervous system. This concept of ‘enteric synucleinopathy’ led to the hypothesis that the enteric nervous system might play a pivotal role in the initiation and spreading of PD. Although this hypothesis opens up interest-ing perspectives on the pathogenesis of neurodegenerative disorders, some important questions are still pend-ing. The present opinion paper describes and compares the physiological and pathophysiological properties of alpha-synuclein in the brain and the enteric nervous system. We conclude that the existing data supports the existence of pathological alpha-synuclein species in the gut in PD. We also discuss if gut-brain interactions are important in other neurodegenerative disorders.
Abstract.
Howard R, Zubko O, Gray R, Bradley R, Harper E, Kelly L, Pank L, O’Brien J, Fox C, Tabet N, et al (2020). Minocycline 200 mg or 400 mg versus placebo for mild Alzheimer’s disease: the MADE Phase II, three-arm RCT.
Abstract:
Minocycline 200 mg or 400 mg versus placebo for mild Alzheimer’s disease: the MADE Phase II, three-arm RCT
BackgroundMinocycline is an anti-inflammatory drug and protects against the toxic effects of β-amyloid in vitro and in animal models of Alzheimer’s disease. To the best of our knowledge, no randomised placebo-controlled clinical trials in patients with Alzheimer’s disease looking at the efficacy and tolerability of minocycline have been carried out.ObjectivesThe trial investigated whether or not minocycline was superior to placebo in slowing down the rate of decline in cognitive and functional ability over 2 years. The safety and tolerability of minocycline were also assessed.DesignA Phase II, three-arm, randomised, double-blind, multicentre trial with a semifactorial design. Participants continued on trial treatment for up to 24 months.SettingPatients were identified from memory services, both within the 32 participating NHS trusts and within the network of memory services supported by the Dementias and Neurodegenerative Diseases Research Network (also known as DeNDRoN).ParticipantsPatients with standardised Mini Mental State Examination scores of > 23 points and with Alzheimer’s disease assessed by the National Institute on Aging–Alzheimer’s Association’s criteria were identified from memory services.InterventionPatients with mild Alzheimer’s disease were randomly allocated 1 : 1 : 1 to receive one of three treatments: arm 1 – 400 mg per day of minocycline; arm 2 – 200 mg per day of minocycline; or arm 3 – placebo. Patients continued treatment for 24 months. Participants, investigators and outcome assessors were blind to treatment allocation.Main outcome measuresPrimary outcome measures were decline in standardised Mini Mental State Examination and Bristol Activities of Daily Living Scale scores of combined minocycline treatment arms versus placebo, as analysed by intention-to-treat repeated measures regression.ResultsBetween 23 May 2014 and 14 April 2016, 554 participants were randomised. of the 544 eligible participants, the mean age was 74.3 years and the average standardised Mini Mental State Examination score was 26.4 points. A total of 252 serious adverse events were reported, with the most common categories being neuropsychiatric and cardiocirculatory. Significantly fewer participants completed treatment with 400 mg of minocycline [29% (53/184)] than 200 mg [62% (112/181)] or placebo [64% (114/179)] (p
Abstract.
Howard R, Zubko O, Bradley R, Harper E, Pank L, O'Brien J, Fox C, Tabet N, Livingston G, Bentham P, et al (2020). Minocycline at 2 Different Dosages vs Placebo for Patients with Mild Alzheimer Disease: a Randomized Clinical Trial.
JAMA Neurology,
77(2), 164-174.
Abstract:
Minocycline at 2 Different Dosages vs Placebo for Patients with Mild Alzheimer Disease: a Randomized Clinical Trial
Importance: There are no disease-modifying treatments for Alzheimer disease (AD), the most common cause of dementia. Minocycline is anti-inflammatory, protects against the toxic effects of β-amyloid in vitro and in animal models of AD, and is a credible repurposed treatment candidate. Objective: to determine whether 24 months of minocycline treatment can modify cognitive and functional decline in patients with mild AD. Design, Setting, and Participants: Participants were recruited into a double-blind randomized clinical trial from May 23, 2014, to April 14, 2016, with 24 months of treatment and follow-up. This multicenter study in England and Scotland involved 32 National Health Service memory clinics within secondary specialist services for people with dementia. From 886 screened patients, 554 patients with a diagnosis of mild AD (Standardised Mini-Mental State Examination [sMMSE] score ≥24) were randomized. Interventions: Participants were randomly allocated 1:1:1 in a semifactorial design to receive minocycline (400 mg/d or 200 mg/d) or placebo for 24 months. Main Outcomes and Measures: Primary outcome measures were decrease in sMMSE score and Bristol Activities of Daily Living Scale (BADLS), analyzed by intention-to-treat repeated-measures regression. Results: of 544 eligible participants (241 women and 303 men), the mean (SD) age was 74.3 (8.2) years, and the mean (SD) sMMSE score was 26.4 (1.9). Fewer participants completed 400-mg minocycline hydrochloride treatment (28.8% [53 of 184]) than 200-mg minocycline treatment (61.9% [112 of 181]) or placebo (63.7% [114 of 179]; P
Abstract.
Prigent A, Chapelet G, De Guilhem de Lataillade A, Oullier T, Durieu E, Bourreille A, Duchalais E, Hardonnière K, Neunlist M, Noble W, et al (2020). Tau accumulates in Crohn's disease gut.
FASEB J,
34(7), 9285-9296.
Abstract:
Tau accumulates in Crohn's disease gut.
A sizeable body of evidence has recently emerged to suggest that gastrointestinal (GI) inflammation might be involved in the development of Parkinson's disease (PD). There is now strong epidemiological and genetical evidence linking PD to inflammatory bowel diseases and we recently demonstrated that the neuronal protein alpha-synuclein, which is critically involved in PD pathophysiology, is upregulated in inflamed segments of Crohn's colon. The microtubule associated protein tau is another neuronal protein critically involved in neurodegenerative disorders but, in contrast to alpha-synuclein, no data are available about its expression and phosphorylation patterns in inflammatory bowel diseases. Here, we examined the expression levels of tau isoforms, their phosphorylation profile and truncation in colon biopsy specimens from 16 Crohn's disease (CD) and 6 ulcerative colitis (UC) patients and compared them to samples from 16 controls. Additional experiments were performed in full thickness segments of colon of five CD and five control subjects, in primary cultures of rat enteric neurons and in nuclear factor erythroid 2-related factor (Nrf2) knockout mice. Our results show the upregulation of two main human tau isoforms in the enteric nervous system (ENS) in CD but not in UC. This upregulation was not transcriptionally regulated but instead likely resulted from a decrease in protein clearance via an Nrf2 pathway. Our findings, which provide the first detailed characterization of tau in CD, suggest that the key proteins involved in neurodegenerative disorders such as alpha-synuclein and tau, might also play a role in CD.
Abstract.
Author URL.
Guo T, Dakkak D, Rodriguez-Martin T, Noble W, Hanger DP (2019). A pathogenic tau fragment compromises microtubules, disrupts insulin signaling and induces the unfolded protein response.
Acta Neuropathol Commun,
7(1).
Abstract:
A pathogenic tau fragment compromises microtubules, disrupts insulin signaling and induces the unfolded protein response.
Human tauopathies including Alzheimer's disease, progressive supranuclear palsy and related disorders, are characterized by deposition of pathological forms of tau, synaptic dysfunction and neuronal loss. We have previously identified a pathogenic C-terminal tau fragment (Tau35) that is associated with human tauopathy. However, it is not known how tau fragmentation affects critical molecular processes in cells and contributes to impaired physiological function. Chinese hamster ovary (CHO) cells and new CHO cell lines stably expressing Tau35 or full-length human tau were used to compare the effects of disease-associated tau cleavage on tau function and signaling pathways. Western blots, microtubule-binding assays and immunofluorescence labeling were used to examine the effects of Tau35 on tau function and on signaling pathways in CHO cells. We show that Tau35 undergoes aberrant phosphorylation when expressed in cells. Although Tau35 contain the entire microtubule-binding region, the lack of the amino terminal half of tau results in a marked reduction in microtubule binding and defective microtubule organization in cells. Notably, Tau35 attenuates insulin-mediated activation of Akt and a selective inhibitory phosphorylation of glycogen synthase kinase-3. Moreover, Tau35 activates ribosomal protein S6 kinase beta-1 signaling and the unfolded protein response, leading to insulin resistance in cells. Tau35 has deleterious effects on signaling pathways that mediate pathological changes and insulin resistance, suggesting a mechanism through which N-terminal cleavage of tau leads to the development and progression of tau pathology in human tauopathy. Our findings highlight the importance of the N-terminal region of tau for its normal physiological function. Furthermore, we show that pathogenic tau cleavage induces tau phosphorylation, resulting in impaired microtubule binding, disruption of insulin signaling and activation of the unfolded protein response. Since insulin resistance is a feature of several tauopathies, this work suggests new potential targets for therapeutic intervention.
Abstract.
Author URL.
Pang CC-C, Kiecker C, O'Brien JT, Noble W, Chang RC-C (2019). Ammon's Horn 2 (CA2) of the Hippocampus: a Long-Known Region with a New Potential Role in Neurodegeneration.
Neuroscientist,
25(2), 167-180.
Abstract:
Ammon's Horn 2 (CA2) of the Hippocampus: a Long-Known Region with a New Potential Role in Neurodegeneration.
The hippocampus has a critical role in cognition and human memory and is one of the most studied structures in the brain. Despite more than 400 years of research, little is known about the Ammon's horn region cornu ammonis 2 (CA2) subfield in comparison to other subfield regions (CA1, CA3, and CA4). Recent findings have shown that CA2 plays a bigger role than previously thought. Here, we review understanding of hippocampus and CA2 ontogenesis, together with basic and clinical findings about the potential role of this region in neurodegenerative disease. The CA2 has widespread anatomical connectivity, unique signaling molecules, and intrinsic electrophysiological properties. Experimental studies using in vivo models found that the CA2 region has a role in cognition, especially in social memory and object recognition. In models of epilepsy and hypoxia, the CA2 exhibits higher resilience to cell death and hypoxia in comparison with neighboring regions, and while hippocampal atrophy remains poorly understood in Parkinson's disease (PD) and dementia with Lewy bodies (DLB), findings from postmortem PD brain demonstrates clear accumulation of α-synuclein pathology in CA2, and the CA2-CA3 region shows relatively more atrophy compared with other hippocampal subfields. Taken together, there is a growing body of evidence suggesting that the CA2 can be an ideal hallmark with which to differentiate different neurodegenerative stages of PD. Here, we summarize these recent data and provide new perspectives/ideas for future investigations to unravel the contribution of the CA2 to neurodegenerative diseases.
Abstract.
Author URL.
Mórotz GM, Glennon EB, Greig J, Lau DHW, Bhembre N, Mattedi F, Muschalik N, Noble W, Vagnoni A, Miller CCJ, et al (2019). Kinesin light chain-1 serine-460 phosphorylation is altered in Alzheimer's disease and regulates axonal transport and processing of the amyloid precursor protein.
Acta Neuropathol Commun,
7(1).
Abstract:
Kinesin light chain-1 serine-460 phosphorylation is altered in Alzheimer's disease and regulates axonal transport and processing of the amyloid precursor protein.
Damage to axonal transport is an early pathogenic event in Alzheimer's disease. The amyloid precursor protein (APP) is a key axonal transport cargo since disruption to APP transport promotes amyloidogenic processing of APP. Moreover, altered APP processing itself disrupts axonal transport. The mechanisms that regulate axonal transport of APP are therefore directly relevant to Alzheimer's disease pathogenesis. APP is transported anterogradely through axons on kinesin-1 motors and one route for this transport involves calsyntenin-1, a type-1 membrane spanning protein that acts as a direct ligand for kinesin-1 light chains (KLCs). Thus, loss of calsyntenin-1 disrupts APP axonal transport and promotes amyloidogenic processing of APP. Phosphorylation of KLC1 on serine-460 has been shown to reduce anterograde axonal transport of calsyntenin-1 by inhibiting the KLC1-calsyntenin-1 interaction. Here we demonstrate that in Alzheimer's disease frontal cortex, KLC1 levels are reduced and the relative levels of KLC1 serine-460 phosphorylation are increased; these changes occur relatively early in the disease process. We also show that a KLC1 serine-460 phosphomimetic mutant inhibits axonal transport of APP in both mammalian neurons in culture and in Drosophila neurons in vivo. Finally, we demonstrate that expression of the KLC1 serine-460 phosphomimetic mutant promotes amyloidogenic processing of APP. Together, these results suggest that increased KLC1 serine-460 phosphorylation contributes to Alzheimer's disease.
Abstract.
Author URL.
Mórotz GM, Glennon EB, Gomez-Suaga P, Lau DHW, Robinson ED, Sedlák É, Vagnoni A, Noble W, Miller CCJ (2019). LMTK2 binds to kinesin light chains to mediate anterograde axonal transport of cdk5/p35 and LMTK2 levels are reduced in Alzheimer's disease brains.
Acta Neuropathol Commun,
7(1).
Abstract:
LMTK2 binds to kinesin light chains to mediate anterograde axonal transport of cdk5/p35 and LMTK2 levels are reduced in Alzheimer's disease brains.
Cyclin dependent kinase-5 (cdk5)/p35 is a neuronal kinase that regulates key axonal and synaptic functions but the mechanisms by which it is transported to these locations are unknown. Lemur tyrosine kinase-2 (LMTK2) is a binding partner for p35 and here we show that LMTK2 also interacts with kinesin-1 light chains (KLC1/2). Binding to KLC1/2 involves a C-terminal tryptophan/aspartate (WD) motif in LMTK2 and the tetratricopeptide repeat (TPR) domains in KLC1/2, and this interaction facilitates axonal transport of LMTK2. Thus, siRNA loss of KLC1 or mutation of the WD motif disrupts axonal transport of LMTK2. We also show that LMTK2 facilitates the formation of a complex containing KLC1 and p35 and that siRNA loss of LMTK2 disrupts axonal transport of both p35 and cdk5. Finally, we show that LMTK2 levels are reduced in Alzheimer's disease brains. Damage to axonal transport and altered cdk5/p35 are pathogenic features of Alzheimer's disease. Thus, LMTK2 binds to KLC1 to direct axonal transport of p35 and its loss may contribute to Alzheimer's disease.
Abstract.
Author URL.
Noble W, Spires-Jones TL (2019). Sleep well to slow Alzheimer's progression?.
Science,
363(6429), 813-814.
Author URL.
Hanger DP, Goniotaki D, Noble W (2019). Synaptic Localisation of Tau.
Adv Exp Med Biol,
1184, 105-112.
Abstract:
Synaptic Localisation of Tau.
The microtubule-associated protein tau has been identified in several intraneuronal compartments, including in association with synapses. In Alzheimer's disease, frontotemporal dementia and related tauopathies, highly phosphorylated tau accumulates as intraneuronal protein aggregates that are likely responsible for the demise of neurons and the subsequent progressive cognitive decline. However, the molecular mechanisms underlying such tau-mediated damage in the tauopathies is not fully understood. Tauopathy induces loss of synapses, which is one of the earliest structural correlates of cognitive dysfunction and disease progression. Notably, altered post-translational modifications of tau, including increased phosphorylation and acetylation, augment the mislocalisation of tau to synapses, impair synaptic vesicle release and might influence the activity-dependent release of tau from neurons. Thus, disease-associated accumulation of modified tau at the synapse adversely affects critical neuronal processes that are linked to neuronal activity and synaptic function. These findings emphasise the importance of gaining a comprehensive understanding of the diverse roles of tau at distinct intraneuronal locations. An improved knowledge of the impact of synaptic tau under physiological and pathological conditions and how tau localisation impacts on neuronal function will provide valuable insights that may lead to the development of new therapies for the tauopathies.
Abstract.
Author URL.
Mauricio R, Benn C, Davis J, Dawson G, Dawson LA, Evans A, Fox N, Gallacher J, Hutton M, Isaac J, et al (2019). Tackling gaps in developing life-changing treatments for dementia.
Alzheimer's and Dementia: Translational Research and Clinical Interventions,
5, 241-253.
Abstract:
Tackling gaps in developing life-changing treatments for dementia
Since the G8 dementia summit in 2013, a number of initiatives have been established with the aim of facilitating the discovery of a disease-modifying treatment for dementia by 2025. This report is a summary of the findings and recommendations of a meeting titled “Tackling gaps in developing life-changing treatments for dementia”, hosted by Alzheimer's Research UK in May 2018. The aim of the meeting was to identify, review, and highlight the areas in dementia research that are not currently being addressed by existing initiatives. It reflects the views of leading experts in the field of neurodegeneration research challenged with developing a strategic action plan to address these gaps and make recommendations on how to achieve the G8 dementia summit goals. The plan calls for significant advances in (1) translating newly identified genetic risk factors into a better understanding of the impacted biological processes; (2) enhanced understanding of selective neuronal resilience to inform novel drug targets; (3) facilitating robust and reproducible drug-target validation; (4) appropriate and evidence-based selection of appropriate subjects for proof-of-concept clinical trials; (5) improving approaches to assess drug-target engagement in humans; and (6) innovative approaches in conducting clinical trials if we are able to detect disease 10–15 years earlier than we currently do today.
Abstract.
Gómez-Suaga P, Pérez-Nievas BG, Glennon EB, Lau DHW, Paillusson S, Mórotz GM, Calì T, Pizzo P, Noble W, Miller CCJ, et al (2019). The VAPB-PTPIP51 endoplasmic reticulum-mitochondria tethering proteins are present in neuronal synapses and regulate synaptic activity.
Acta Neuropathol Commun,
7(1).
Abstract:
The VAPB-PTPIP51 endoplasmic reticulum-mitochondria tethering proteins are present in neuronal synapses and regulate synaptic activity.
Signaling between the endoplasmic reticulum (ER) and mitochondria regulates a number of key neuronal functions. This signaling involves close physical contacts between the two organelles that are mediated by "tethering proteins" that function to recruit regions of ER to the mitochondrial surface. The ER protein, vesicle-associated membrane protein-associated protein B (VAPB) and the mitochondrial membrane protein, protein tyrosine phosphatase interacting protein-51 (PTPIP51), interact to form one such tether. Recently, damage to ER-mitochondria signaling involving disruption of the VAPB-PTPIP51 tethers has been linked to the pathogenic process in Parkinson's disease, fronto-temporal dementia (FTD) and related amyotrophic lateral sclerosis (ALS). Loss of neuronal synaptic function is a key feature of Parkinson's disease and FTD/ALS but the roles that ER-mitochondria signaling and the VAPB-PTPIP51 tethers play in synaptic function are not known. Here, we demonstrate that the VAPB-PTPIP51 tethers regulate synaptic activity. VAPB and PTPIP51 localise and form contacts at synapses, and stimulating neuronal activity increases ER-mitochondria contacts and the VAPB-PTPIP51 interaction. Moreover, siRNA loss of VAPB or PTPIP51 perturbs synaptic function and dendritic spine morphology. Our results reveal a new role for the VAPB-PTPIP51 tethers in neurons and suggest that damage to ER-mitochondria signaling contributes to synaptic dysfunction in Parkinson's disease and FTD/ALS.
Abstract.
Author URL.
Giacomini C, Koo C-Y, Yankova N, Tavares IA, Wray S, Noble W, Hanger DP, Morris JDH (2018). A new TAO kinase inhibitor reduces tau phosphorylation at sites associated with neurodegeneration in human tauopathies.
Acta Neuropathol Commun,
6(1).
Abstract:
A new TAO kinase inhibitor reduces tau phosphorylation at sites associated with neurodegeneration in human tauopathies.
In Alzheimer's disease (AD) and related tauopathies, the microtubule-associated protein tau is highly phosphorylated and aggregates to form neurofibrillary tangles that are characteristic of these neurodegenerative diseases. Our previous work has demonstrated that the thousand-and-one amino acid kinases (TAOKs) 1 and 2 phosphorylate tau on more than 40 residues in vitro. Here we show that TAOKs are phosphorylated and active in AD brain sections displaying mild (Braak stage II), intermediate (Braak stage IV) and advanced (Braak stage VI) tau pathology and that active TAOKs co-localise with both pre-tangle and tangle structures. TAOK activity is also enriched in pathological tau containing sarkosyl-insoluble extracts prepared from AD brain. Two new phosphorylated tau residues (T123 and T427) were identified in AD brain, which appear to be targeted specifically by TAOKs. A new small molecule TAOK inhibitor (Compound 43) reduced tau phosphorylation on T123 and T427 and also on additional pathological sites (S262/S356 and S202/T205/S208) in vitro and in cell models. The TAOK inhibitor also decreased tau phosphorylation in differentiated primary cortical neurons without affecting markers of synapse and neuron health. Notably, TAOK activity also co-localised with tangles in post-mortem frontotemporal lobar degeneration (FTLD) brain tissue. Furthermore, the TAOK inhibitor decreased tau phosphorylation in induced pluripotent stem cell derived neurons from FTLD patients, as well as cortical neurons from a transgenic mouse model of tauopathy (Tau35 mice). Our results demonstrate that abnormal TAOK activity is present at pre-tangles and tangles in tauopathies and that TAOK inhibition effectively decreases tau phosphorylation on pathological sites. Thus, TAOKs may represent a novel target to reduce or prevent tau-associated neurodegeneration in tauopathies.
Abstract.
Author URL.
Lionnet A, Wade MA, Corbillé AG, Prigent A, Paillusson S, Tasselli M, Gonzales J, Durieu E, Rolli-Derkinderen M, Coron E, et al (2018). Characterisation of tau in the human and rodent enteric nervous system under physiological conditions and in tauopathy.
Acta Neuropathologica Communications,
6(1), 1-17.
Abstract:
Characterisation of tau in the human and rodent enteric nervous system under physiological conditions and in tauopathy
Tau is normally a highly soluble phosphoprotein found predominantly in neurons. Six different isoforms of tau are expressed in the adult human CNS. Under pathological conditions, phosphorylated tau aggregates are a defining feature of neurodegenerative disorders called tauopathies. Recent findings have suggested a potential role of the gut-brain axis in CNS homeostasis, and therefore we set out to examine the isoform profile and phosphorylation state of tau in the enteric nervous system (ENS) under physiological conditions and in tauopathies. Surgical specimens of human colon from controls, Parkinson's disease (PD) and progressive supranuclear palsy (PSP) patients were analyzed by Western Blot and immunohistochemistry using a panel of anti-tau antibodies. We found that adult human ENS primarily expresses two tau isoforms, localized in the cell bodies and neuronal processes. We did not observe any difference in the enteric tau isoform profile and phosphorylation state between PSP, PD and control subjects. The htau mouse model of tauopathy also expressed two main isoforms of human tau in the ENS, and there were no apparent differences in ENS tau localization or phosphorylation between wild-type and htau mice. Tau in both human and mouse ENS was found to be phosphorylated but poorly susceptible to dephosphorylation with lambda phosphatase. To investigate ENS tau phosphorylation further, primary cultures from rat enteric neurons, which express four isoforms of tau, were pharmacologically manipulated to show that ENS tau phosphorylation state can be regulated, at least in vitro. Our study is the first to characterize tau in the rodent and human ENS. As a whole, our findings provide a basis to unravel the functions of tau in the ENS and to further investigate the possibility of pathological changes in enteric neuropathies and tauopathies.
Abstract.
Lionnet A, Wade MA, Corbillé A-G, Prigent A, Paillusson S, Tasselli M, Gonzales J, Durieu E, Rolli-Derkinderen M, Coron E, et al (2018). Characterisation of tau in the human and rodent enteric nervous system under physiological conditions and in tauopathy.
Acta Neuropathol Commun,
6(1).
Abstract:
Characterisation of tau in the human and rodent enteric nervous system under physiological conditions and in tauopathy.
Tau is normally a highly soluble phosphoprotein found predominantly in neurons. Six different isoforms of tau are expressed in the adult human CNS. Under pathological conditions, phosphorylated tau aggregates are a defining feature of neurodegenerative disorders called tauopathies. Recent findings have suggested a potential role of the gut-brain axis in CNS homeostasis, and therefore we set out to examine the isoform profile and phosphorylation state of tau in the enteric nervous system (ENS) under physiological conditions and in tauopathies. Surgical specimens of human colon from controls, Parkinson's disease (PD) and progressive supranuclear palsy (PSP) patients were analyzed by Western Blot and immunohistochemistry using a panel of anti-tau antibodies. We found that adult human ENS primarily expresses two tau isoforms, localized in the cell bodies and neuronal processes. We did not observe any difference in the enteric tau isoform profile and phosphorylation state between PSP, PD and control subjects. The htau mouse model of tauopathy also expressed two main isoforms of human tau in the ENS, and there were no apparent differences in ENS tau localization or phosphorylation between wild-type and htau mice. Tau in both human and mouse ENS was found to be phosphorylated but poorly susceptible to dephosphorylation with lambda phosphatase. To investigate ENS tau phosphorylation further, primary cultures from rat enteric neurons, which express four isoforms of tau, were pharmacologically manipulated to show that ENS tau phosphorylation state can be regulated, at least in vitro. Our study is the first to characterize tau in the rodent and human ENS. As a whole, our findings provide a basis to unravel the functions of tau in the ENS and to further investigate the possibility of pathological changes in enteric neuropathies and tauopathies.
Abstract.
Author URL.
Croft CL, Noble W (2018). Preparation of organotypic brain slice cultures for the study of Alzheimer's disease.
F1000Res,
7Abstract:
Preparation of organotypic brain slice cultures for the study of Alzheimer's disease.
Alzheimer's disease, the most common cause of dementia, is a progressive neurodegenerative disorder characterised by amyloid-beta deposits in extracellular plaques, intracellular neurofibrillary tangles of aggregated tau, synaptic dysfunction and neuronal death. Transgenic rodent models to study Alzheimer's mimic features of human disease such as age-dependent accumulation of abnormal beta-amyloid and tau, synaptic dysfunction, cognitive deficits and neurodegeneration. These models have proven vital for improving our understanding of the molecular mechanisms underlying AD and for identifying promising therapeutic approaches. However, modelling neurodegenerative disease in animals commonly involves aging animals until they develop harmful phenotypes, often coupled with invasive procedures. We have developed a novel organotypic brain slice culture model to study Alzheimer's disease using 3xTg-AD mice which brings the potential of substantially reducing the number of rodents used in dementia research from an estimated 20,000 per year. Using a McIllwain tissue chopper, we obtain 36 x 350 micron slices from each P8-P9 mouse pup for culture between 2 weeks and 6 months on semi-permeable 0.4 micron pore membranes, considerably reducing the numbers of animals required to investigate multiple stages of disease. This tractable model also allows the opportunity to modulate multiple pathways in tissues from a single animal. We believe that this model will most benefit dementia researchers in the academic and drug discovery sectors. We validated the slice culture model against aged mice, showing that the molecular phenotype closely mimics that displayed in vivo, albeit in an accelerated timescale. We showed beneficial outcomes following treatment of slices with agents previously shown to have therapeutic effects in vivo, and we also identified new mechanisms of action of other compounds. Thus, organotypic brain slice cultures from transgenic mouse models expressing Alzheimer's disease-related genes may provide a valid and sensitive replacement for in vivo studies that do not involve behavioural analysis.
Abstract.
Author URL.
Kerr F, Sofola-Adesakin O, Ivanov DK, Gatliff J, Gomez Perez-Nievas B, Bertrand HC, Martinez P, Callard R, Snoeren I, Cochemé HM, et al (2017). Direct Keap1-Nrf2 disruption as a potential therapeutic target for Alzheimer's disease.
PLoS Genet,
13(3).
Abstract:
Direct Keap1-Nrf2 disruption as a potential therapeutic target for Alzheimer's disease.
Nrf2, a transcriptional activator of cell protection genes, is an attractive therapeutic target for the prevention of neurodegenerative diseases, including Alzheimer's disease (AD). Current Nrf2 activators, however, may exert toxicity and pathway over-activation can induce detrimental effects. An understanding of the mechanisms mediating Nrf2 inhibition in neurodegenerative conditions may therefore direct the design of drugs targeted for the prevention of these diseases with minimal side-effects. Our study provides the first in vivo evidence that specific inhibition of Keap1, a negative regulator of Nrf2, can prevent neuronal toxicity in response to the AD-initiating Aβ42 peptide, in correlation with Nrf2 activation. Comparatively, lithium, an inhibitor of the Nrf2 suppressor GSK-3, prevented Aβ42 toxicity by mechanisms independent of Nrf2. A new direct inhibitor of the Keap1-Nrf2 binding domain also prevented synaptotoxicity mediated by naturally-derived Aβ oligomers in mouse cortical neurons. Overall, our findings highlight Keap1 specifically as an efficient target for the re-activation of Nrf2 in AD, and support the further investigation of direct Keap1 inhibitors for the prevention of neurodegeneration in vivo.
Abstract.
Author URL.
Croft CL, Kurbatskaya K, Hanger DP, Noble W (2017). Inhibition of glycogen synthase kinase-3 by BTA-EG4 reduces tau abnormalities in an organotypic brain slice culture model of Alzheimer's disease.
Sci Rep,
7(1).
Abstract:
Inhibition of glycogen synthase kinase-3 by BTA-EG4 reduces tau abnormalities in an organotypic brain slice culture model of Alzheimer's disease.
Organotypic brain slice culture models provide an alternative to early stage in vivo studies as an integrated tissue system that can recapitulate key disease features, thereby providing an excellent platform for drug screening. We recently described a novel organotypic 3xTg-AD mouse brain slice culture model with key Alzheimer's disease-like changes. We now highlight the potential of this model for testing disease-modifying agents and show that results obtained following in vivo treatment are replicated in brain slice cultures from 3xTg-AD mice. Moreover, we describe novel effects of the amyloid-binding tetra (ethylene glycol) derivative of benzothiazole aniline, BTA-EG4, on tau. BTA-EG4 significantly reduced tau phosphorylation in the absence of any changes in the amounts of amyloid precursor protein, amyloid-β or synaptic proteins. The reduction in tau phosphorylation was associated with inactivation of the Alzheimer's disease-relevant major tau kinase, GSK-3. These findings highlight the utility of 3xTg-AD brain slice cultures as a rapid and reliable in vitro method for drug screening prior to in vivo testing. Furthermore, we demonstrate novel tau-directed effects of BTA-EG4 that are likely related to the ability of this agent to inactivate GSK-3. Our findings support the further exploration of BTA-EG4 as a candidate therapeutic for Alzheimer's disease.
Abstract.
Author URL.
Croft CL, Wade MA, Kurbatskaya K, Mastrandreas P, Hughes MM, Phillips EC, Pooler AM, Perkinton MS, Hanger DP, Noble W, et al (2017). Membrane association and release of wild-type and pathological tau from organotypic brain slice cultures.
Cell Death Dis,
8(3).
Abstract:
Membrane association and release of wild-type and pathological tau from organotypic brain slice cultures.
The spatiotemporal transmission of pathological tau in the brain is characteristic of Alzheimer's disease. Release of both soluble and abnormal tau species from healthy neurons is increased upon stimulation of neuronal activity. It is not yet understood whether the mechanisms controlling soluble tau release from healthy neurons is the same as those involved in the spread of pathological tau species. To begin to understand these events, we have studied tau distribution and release using organotypic brain slice cultures. The slices were cultured from postnatal wild-type and 3xTg-AD mice for up to 1 month. Tau distribution in subcellular compartments was examined by western blotting, and tau release into culture medium was determined using a sensitive sandwich ELISA. We show here that 3xTg-AD cultures have an accelerated development of pathological tau abnormalities including the redistribution of tau to synaptic and membrane compartments. The 3xTg-AD slice cultures show elevated basal tau release relative to total tau when compared with wild-type cultures. However, tau release from 3xTg-AD slices cannot be further stimulated when neuronal activity is increased with potassium chloride. Moreover, we report that there is an increased pool of dephosphorylated membrane-associated tau in conditions where tau release is increased. These data suggest that there may be differential patterns of tau release when using integrated slice culture models of wild-type and transgenic mouse brain, although it will be important to determine the effect of tau overexpression for these findings. These results further increase our knowledge of the molecular mechanisms underlying tau release and propagation in neurodegenerative tauopathies.
Abstract.
Author URL.
Guo T, Noble W, Hanger DP (2017). Roles of tau protein in health and disease.
Acta Neuropathol,
133(5), 665-704.
Abstract:
Roles of tau protein in health and disease.
Tau is well established as a microtubule-associated protein in neurons. However, under pathological conditions, aberrant assembly of tau into insoluble aggregates is accompanied by synaptic dysfunction and neural cell death in a range of neurodegenerative disorders, collectively referred to as tauopathies. Recent advances in our understanding of the multiple functions and different locations of tau inside and outside neurons have revealed novel insights into its importance in a diverse range of molecular pathways including cell signalling, synaptic plasticity, and regulation of genomic stability. The present review describes the physiological and pathophysiological properties of tau and how these relate to its distribution and functions in neurons. We highlight the post-translational modifications of tau, which are pivotal in defining and modulating tau localisation and its roles in health and disease. We include discussion of other pathologically relevant changes in tau, including mutation and aggregation, and how these aspects impinge on the propensity of tau to propagate, and potentially drive neuronal loss, in diseased brain. Finally, we describe the cascade of pathological events that may be driven by tau dysfunction, including impaired axonal transport, alterations in synapse and mitochondrial function, activation of the unfolded protein response and defective protein degradation. It is important to fully understand the range of neuronal functions attributed to tau, since this will provide vital information on its involvement in the development and pathogenesis of disease. Such knowledge will enable determination of which critical molecular pathways should be targeted by potential therapeutic agents developed for the treatment of tauopathies.
Abstract.
Author URL.
Gomez-Suaga P, Paillusson S, Stoica R, Noble W, Hanger DP, Miller CCJ (2017). The ER-Mitochondria Tethering Complex VAPB-PTPIP51 Regulates Autophagy.
Curr Biol,
27(3), 371-385.
Abstract:
The ER-Mitochondria Tethering Complex VAPB-PTPIP51 Regulates Autophagy.
Mitochondria form close physical associations with the endoplasmic reticulum (ER) that regulate a number of physiological functions. One mechanism by which regions of ER are recruited to mitochondria involves binding of the ER protein VAPB to the mitochondrial protein PTPIP51, which act as scaffolds to tether the two organelles. Here, we show that the VAPB-PTPIP51 tethers regulate autophagy. We demonstrate that overexpression of VAPB or PTPIP51 to tighten ER-mitochondria contacts impairs, whereas small interfering RNA (siRNA)-mediated loss of VAPB or PTPIP51 to loosen contacts stimulates, autophagosome formation. Moreover, we show that expression of a synthetic linker protein that artificially tethers ER and mitochondria also reduces autophagosome formation, and that this artificial tether rescues the effects of siRNA loss of VAPB or PTPIP51 on autophagy. Thus, these effects of VAPB and PTPIP51 manipulation on autophagy are a consequence of their ER-mitochondria tethering function. Interestingly, we discovered that tightening of ER-mitochondria contacts by overexpression of VAPB or PTPIP51 impairs rapamycin- and torin 1-induced, but not starvation-induced, autophagy. This suggests that the regulation of autophagy by ER-mitochondria signaling is at least partly dependent upon the nature of the autophagic stimulus. Finally, we demonstrate that the mechanism by which the VAPB-PTPIP51 tethers regulate autophagy involves their role in mediating delivery of Ca2+ to mitochondria from ER stores. Thus, our findings reveal a new molecular mechanism for regulating autophagy.
Abstract.
Author URL.
Paillusson S, Gomez-Suaga P, Stoica R, Little D, Gissen P, Devine MJ, Noble W, Hanger DP, Miller CCJ (2017). α-Synuclein binds to the ER-mitochondria tethering protein VAPB to disrupt Ca2+ homeostasis and mitochondrial ATP production.
Acta Neuropathol,
134(1), 129-149.
Abstract:
α-Synuclein binds to the ER-mitochondria tethering protein VAPB to disrupt Ca2+ homeostasis and mitochondrial ATP production.
α-Synuclein is strongly linked to Parkinson's disease but the molecular targets for its toxicity are not fully clear. However, many neuronal functions damaged in Parkinson's disease are regulated by signalling between the endoplasmic reticulum (ER) and mitochondria. This signalling involves close physical associations between the two organelles that are mediated by binding of the integral ER protein vesicle-associated membrane protein-associated protein B (VAPB) to the outer mitochondrial membrane protein, protein tyrosine phosphatase-interacting protein 51 (PTPIP51). VAPB and PTPIP51 thus act as a scaffold to tether the two organelles. Here we show that α-synuclein binds to VAPB and that overexpression of wild-type and familial Parkinson's disease mutant α-synuclein disrupt the VAPB-PTPIP51 tethers to loosen ER-mitochondria associations. This disruption to the VAPB-PTPIP51 tethers is also seen in neurons derived from induced pluripotent stem cells from familial Parkinson's disease patients harbouring pathogenic triplication of the α-synuclein gene. We also show that the α-synuclein induced loosening of ER-mitochondria contacts is accompanied by disruption to Ca2+ exchange between the two organelles and mitochondrial ATP production. Such disruptions are likely to be particularly damaging to neurons that are heavily dependent on correct Ca2+ signaling and ATP.
Abstract.
Author URL.
Stoica R, Paillusson S, Gomez-Suaga P, Mitchell JC, Lau DH, Gray EH, Sancho RM, Vizcay-Barrena G, De Vos KJ, Shaw CE, et al (2016). ALS/FTD-associated FUS activates GSK-3β to disrupt the VAPB-PTPIP51 interaction and ER-mitochondria associations.
EMBO Rep,
17(9), 1326-1342.
Abstract:
ALS/FTD-associated FUS activates GSK-3β to disrupt the VAPB-PTPIP51 interaction and ER-mitochondria associations.
Defective FUS metabolism is strongly associated with amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD), but the mechanisms linking FUS to disease are not properly understood. However, many of the functions disrupted in ALS/FTD are regulated by signalling between the endoplasmic reticulum (ER) and mitochondria. This signalling is facilitated by close physical associations between the two organelles that are mediated by binding of the integral ER protein VAPB to the outer mitochondrial membrane protein PTPIP51, which act as molecular scaffolds to tether the two organelles. Here, we show that FUS disrupts the VAPB-PTPIP51 interaction and ER-mitochondria associations. These disruptions are accompanied by perturbation of Ca(2+) uptake by mitochondria following its release from ER stores, which is a physiological read-out of ER-mitochondria contacts. We also demonstrate that mitochondrial ATP production is impaired in FUS-expressing cells; mitochondrial ATP production is linked to Ca(2+) levels. Finally, we demonstrate that the FUS-induced reductions to ER-mitochondria associations and are linked to activation of glycogen synthase kinase-3β (GSK-3β), a kinase already strongly associated with ALS/FTD.
Abstract.
Author URL.
Tiwari SS, Mizuno K, Ghosh A, Aziz W, Troakes C, Daoud J, Golash V, Noble W, Hortobágyi T, Giese KP, et al (2016). Alzheimer-related decrease in CYFIP2 links amyloid production to tau hyperphosphorylation and memory loss.
Brain,
139(Pt 10), 2751-2765.
Abstract:
Alzheimer-related decrease in CYFIP2 links amyloid production to tau hyperphosphorylation and memory loss.
Characteristic features of Alzheimer's disease are memory loss, plaques resulting from abnormal processing of amyloid precursor protein (APP), and presence of neurofibrillary tangles and dystrophic neurites containing hyperphosphorylated tau. Currently, it is not known what links these abnormalities together. Cytoplasmic FMR1 interacting protein 2 (CYFIP2) has been suggested to regulate mRNA translation at synapses and this may include local synthesis of APP and alpha-calcium/calmodulin-dependent kinase II, a kinase that can phosphorylate tau. Further, CYFIP2 is part of the Wiskott-Aldrich syndrome protein-family verprolin-homologous protein complex, which has been implicated in actin polymerization at synapses, a process thought to be required for memory formation. Our previous studies on p25 dysregulation put forward the hypothesis that CYFIP2 expression is reduced in Alzheimer's disease and that this contributes to memory impairment, abnormal APP processing and tau hyperphosphorylation. Here, we tested this hypothesis. First, in post-mortem tissue CYFIP2 expression was reduced by ∼50% in severe Alzheimer's hippocampus and superior temporal gyrus when normalized to expression of a neuronal or synaptic marker protein. Interestingly, there was also a trend for decreased expression in mild Alzheimer's disease hippocampus. Second, CYFIP2 expression was reduced in old but not in young Tg2576 mice, a model of familial Alzheimer's disease. Finally, we tested the direct impact of reduced CYFIP2 expression in heterozygous null mutant mice. We found that in hippocampus this reduced expression causes an increase in APP and β-site amyloid precursor protein cleaving enzyme 1 (BACE1) protein, but not mRNA expression, and elevates production of amyloid-β42 Reduced CYFIP2 expression also increases alpha-calcium/calmodulin-dependent kinase II protein expression, and this is associated with hyperphosphorylation of tau at serine-214. The reduced expression also impairs spine maturity without affecting spine density in apical dendrites of CA1 pyramidal neurons. Furthermore, the reduced expression prevents retention of spatial memory in the water maze. Taken together, our findings indicate that reduced CYFIP2 expression triggers a cascade of change towards Alzheimer's disease, including amyloid production, tau hyperphosphorylation and memory loss. We therefore suggest that CYFIP2 could be a potential hub for targeting treatment of the disease.
Abstract.
Author URL.
Lau DHW, Hogseth M, Phillips EC, O'Neill MJ, Pooler AM, Noble W, Hanger DP (2016). Critical residues involved in tau binding to fyn: implications for tau phosphorylation in Alzheimer's disease.
Acta Neuropathol Commun,
4(1).
Abstract:
Critical residues involved in tau binding to fyn: implications for tau phosphorylation in Alzheimer's disease.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterised by neuropathological deposits of amyloid plaques and neurofibrillary tangles comprised of β-amyloid and tau protein, respectively. In AD, tau becomes abnormally phosphorylated and aggregates to form intracellular deposits. However, the mechanisms by which tau exerts neurotoxicity in disease remain unclear. Recent studies have suggested that the presence of tau at synapses may indicate a role in neuronal signalling, which could be disrupted in pathological conditions. The non-receptor-associated tyrosine kinase fyn is located at the dendrite in neurons, where it was recently shown to interact with tau to stabilise receptor complexes at the post-synaptic density. Fyn also co-localises with tau in a proportion of neurons containing tau tangles in AD and fyn is also a tau kinase. Hence, tau-fyn interactions could play a pathogenic role in AD. Here we report the identification of critical proline residues, Pro213, Pro216, and Pro219, located within the fifth and sixth Pro-X-X-Pro motifs in the proline-rich region of tau, that are important for its binding to fyn. These residues in tau are flanked by numerous phosphorylation sites and therefore we investigated the relationship between fyn and the degree of tau phosphorylation in human post-mortem brain tissue. We found no difference in the amount of fyn present in control and AD brain. Notably, however, there was a significant correlation between fyn and phosphorylated tau at specific phospho-epitopes in control, but not in AD brain. Our results suggest that the pathological mechanisms underlying AD, that result in increased tau phosphorylation, may disrupt the physiological relationship between tau phosphorylation and fyn.
Abstract.
Author URL.
Bondulich MK, Guo T, Meehan C, Manion J, Rodriguez Martin T, Mitchell JC, Hortobagyi T, Yankova N, Stygelbout V, Brion J-P, et al (2016). Tauopathy induced by low level expression of a human brain-derived tau fragment in mice is rescued by phenylbutyrate.
Brain,
139(Pt 8), 2290-2306.
Abstract:
Tauopathy induced by low level expression of a human brain-derived tau fragment in mice is rescued by phenylbutyrate.
Human neurodegenerative tauopathies exhibit pathological tau aggregates in the brain along with diverse clinical features including cognitive and motor dysfunction. Post-translational modifications including phosphorylation, ubiquitination and truncation, are characteristic features of tau present in the brain in human tauopathy. We have previously reported an N-terminally truncated form of tau in human brain that is associated with the development of tauopathy and is highly phosphorylated. We have generated a new mouse model of tauopathy in which this human brain-derived, 35 kDa tau fragment (Tau35) is expressed in the absence of any mutation and under the control of the human tau promoter. Most existing mouse models of tauopathy overexpress mutant tau at levels that do not occur in human neurodegenerative disease, whereas Tau35 transgene expression is equivalent to less than 10% of that of endogenous mouse tau. Tau35 mice recapitulate key features of human tauopathies, including aggregated and abnormally phosphorylated tau, progressive cognitive and motor deficits, autophagic/lysosomal dysfunction, loss of synaptic protein, and reduced life-span. Importantly, we found that sodium 4-phenylbutyrate (Buphenyl®), a drug used to treat urea cycle disorders and currently in clinical trials for a range of neurodegenerative diseases, reverses the observed abnormalities in tau and autophagy, behavioural deficits, and loss of synapsin 1 in Tau35 mice. Our results show for the first time that, unlike other tau transgenic mouse models, minimal expression of a human disease-associated tau fragment in Tau35 mice causes a profound and progressive tauopathy and cognitive changes, which are rescued by pharmacological intervention using a clinically approved drug. These novel Tau35 mice therefore represent a highly disease-relevant animal model in which to investigate molecular mechanisms and to develop novel treatments for human tauopathies.
Abstract.
Author URL.
Kurbatskaya K, Phillips EC, Croft CL, Dentoni G, Hughes MM, Wade MA, Al-Sarraj S, Troakes C, O'Neill MJ, Perez-Nievas BG, et al (2016). Upregulation of calpain activity precedes tau phosphorylation and loss of synaptic proteins in Alzheimer's disease brain.
Acta Neuropathol Commun,
4Abstract:
Upregulation of calpain activity precedes tau phosphorylation and loss of synaptic proteins in Alzheimer's disease brain.
Alterations in calcium homeostasis are widely reported to contribute to synaptic degeneration and neuronal loss in Alzheimer's disease. Elevated cytosolic calcium concentrations lead to activation of the calcium-sensitive cysteine protease, calpain, which has a number of substrates known to be abnormally regulated in disease. Analysis of human brain has shown that calpain activity is elevated in AD compared to controls, and that calpain-mediated proteolysis regulates the activity of important disease-associated proteins including the tau kinases cyclin-dependent kinase 5 and glycogen kinase synthase-3. Here, we sought to investigate the likely temporal association between these changes during the development of sporadic AD using Braak staged post-mortem brain. Quantification of protein amounts in these tissues showed increased activity of calpain-1 from Braak stage III onwards in comparison to controls, extending previous findings that calpain-1 is upregulated at end-stage disease, and suggesting that activation of calcium-sensitive signalling pathways are sustained from early stages of disease development. Increases in calpain-1 activity were associated with elevated activity of the endogenous calpain inhibitor, calpastatin, itself a known calpain substrate. Activation of the tau kinases, glycogen-kinase synthase-3 and cyclin-dependent kinase 5 were also found to occur in Braak stage II-III brain, and these preceded global elevations in tau phosphorylation and the loss of post-synaptic markers. In addition, we identified transient increases in total amyloid precursor protein and pre-synaptic markers in Braak stage II-III brain, that were lost by end stage Alzheimer's disease, that may be indicative of endogenous compensatory responses to the initial stages of neurodegeneration. These findings provide insight into the molecular events that underpin the progression of Alzheimer's disease, and further highlight the rationale for investigating novel treatment strategies that are based on preventing abnormal calcium homeostasis or blocking increases in the activity of calpain or important calpain substrates.
Abstract.
Author URL.
Tiwari SS, d'Orange M, Troakes C, Shurovi BN, Engmann O, Noble W, Hortobágyi T, Giese KP (2015). Evidence that the presynaptic vesicle protein CSPalpha is a key player in synaptic degeneration and protection in Alzheimer's disease.
Mol Brain,
8Abstract:
Evidence that the presynaptic vesicle protein CSPalpha is a key player in synaptic degeneration and protection in Alzheimer's disease.
BACKGROUND: in Alzheimer's disease synapse loss precedes neuronal loss and correlates best with impaired memory formation. However, the mechanisms underlying synaptic degeneration in Alzheimer's disease are not well known. Further, it is unclear why synapses in AD cerebellum are protected from degeneration. Our recent work on the cyclin-dependent kinase 5 activator p25 suggested that expression of the multifunctional presynaptic molecule cysteine string protein alpha (CSPalpha) may be affected in Alzheimer's disease. RESULTS: Using western blots and immunohistochemistry, we found that CSPalpha expression is reduced in hippocampus and superior temporal gyrus in Alzheimer's disease. Reduced CSPalpha expression occurred before synaptophysin levels drop, suggesting that it contributes to the initial stages of synaptic degeneration. Surprisingly, we also found that CSPalpha expression is upregulated in cerebellum in Alzheimer's disease. This CSPalpha upregulation reached the same level as in young, healthy cerebellum. We tested the idea whether CSPalpha upregulation might be neuroprotective, using htau mice, a model of tauopathy that expresses the entire wild-type human tau gene in the absence of mouse tau. In htau mice CSPalpha expression was found to be elevated at times when neuronal loss did not occur. CONCLUSION: Our findings provide evidence that the presynaptic vesicle protein CSPalpha is a key player in synaptic degeneration and protection in Alzheimer's disease. In the forebrain CSPalpha expression is reduced early in the disease and this may contribute to the initial stages of synaptic degeneration. In the cerebellum CSPalpha expression is upregulated to young, healthy levels and this may protect cerebellar synapses and neurons to survive. Accordingly, CSPalpha upregulation also occurs in a mouse model of tauopathy only at time when neuronal loss does not take place.
Abstract.
Author URL.
Pooler AM, Noble W, Hanger DP (2014). A role for tau at the synapse in Alzheimer's disease pathogenesis.
Neuropharmacology,
76 Pt A, 1-8.
Abstract:
A role for tau at the synapse in Alzheimer's disease pathogenesis.
Alzheimer's disease (AD) is characterized by brain deposition of amyloid plaques and tau neurofibrillary tangles along with steady cognitive decline. Although the mechanism by which AD pathogenesis occurs is unclear, accumulating evidence suggests that dysfunction and loss of synaptic connections may be an early event underlying disease progression. Profound synapse degeneration is observed in AD, and the density of these connections strongly correlates with cognitive ability. Initial investigations into AD-related synaptic changes focused on the toxic effects of amyloid. However, recent research suggests an emerging role for tau at the synapse. Even in the absence of tangles, mice overexpressing human tau display significant synaptic degeneration, suggesting that soluble, oligomeric tau is the synaptotoxic species. However, the localization of tau within synapses in both healthy and AD brains indicates that tau might play a role in normal synaptic function, which may be disrupted in disease. Tau is able to impact synaptic activity in several ways: studies show tau interacting directly with post-synaptic signaling complexes, regulating glutamatergic receptor content in dendritic spines, and influencing targeting and function of synaptic mitochondria. Early trials of tau-targeted immunotherapy reduce tau pathology and synapse loss, indicating that the toxic effects of tau may be reversible within a certain time frame. Understanding the role of tau in both normal and degenerating synapses is crucial for the development of therapeutic strategies designed to ameliorate synapse loss and prevent AD pathogenesis. This article is part of the Special Issue entitled 'The Synaptic Basis of Neurodegenerative Disorders'.
Abstract.
Author URL.
Phillips EC, Croft CL, Kurbatskaya K, O'Neill MJ, Hutton ML, Hanger DP, Garwood CJ, Noble W (2014). Astrocytes and neuroinflammation in Alzheimer's disease.
Biochem Soc Trans,
42(5), 1321-1325.
Abstract:
Astrocytes and neuroinflammation in Alzheimer's disease.
Increased production of amyloid β-peptide (Aβ) and altered processing of tau in Alzheimer's disease (AD) are associated with synaptic dysfunction, neuronal death and cognitive and behavioural deficits. Neuroinflammation is also a prominent feature of AD brain and considerable evidence indicates that inflammatory events play a significant role in modulating the progression of AD. The role of microglia in AD inflammation has long been acknowledged. Substantial evidence now demonstrates that astrocyte-mediated inflammatory responses also influence pathology development, synapse health and neurodegeneration in AD. Several anti-inflammatory therapies targeting astrocytes show significant benefit in models of disease, particularly with respect to tau-associated neurodegeneration. However, the effectiveness of these approaches is complex, since modulating inflammatory pathways often has opposing effects on the development of tau and amyloid pathology, and is dependent on the precise phenotype and activities of astrocytes in different cellular environments. An increased understanding of interactions between astrocytes and neurons under different conditions is required for the development of safe and effective astrocyte-based therapies for AD and related neurodegenerative diseases.
Abstract.
Author URL.
Atherton J, Kurbatskaya K, Bondulich M, Croft CL, Garwood CJ, Chhabra R, Wray S, Jeromin A, Hanger DP, Noble W, et al (2014). Calpain cleavage and inactivation of the sodium calcium exchanger-3 occur downstream of Aβ in Alzheimer's disease.
Aging Cell,
13(1), 49-59.
Abstract:
Calpain cleavage and inactivation of the sodium calcium exchanger-3 occur downstream of Aβ in Alzheimer's disease.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by pathological deposits of β-amyloid (Aβ) in senile plaques, intracellular neurofibrillary tangles (NFTs) comprising hyperphosphorylated aggregated tau, synaptic dysfunction and neuronal death. Substantial evidence indicates that disrupted neuronal calcium homeostasis is an early event in AD that could mediate synaptic dysfunction and neuronal toxicity. Sodium calcium exchangers (NCXs) play important roles in regulating intracellular calcium, and accumulating data suggests that reduced NCX function, following aberrant proteolytic cleavage of these exchangers, may contribute to neurodegeneration. Here, we show that elevated calpain, but not caspase-3, activity is a prominent feature of AD brain. In addition, we observe increased calpain-mediated cleavage of NCX3, but not a related family member NCX1, in AD brain relative to unaffected tissue and that from other neurodegenerative conditions. Moreover, the extent of NCX3 proteolysis correlated significantly with amounts of Aβ1-42. We also show that exposure of primary cortical neurons to oligomeric Aβ1-42 results in calpain-dependent cleavage of NCX3, and we demonstrate that loss of NCX3 function is associated with Aβ toxicity. Our findings suggest that Aβ mediates calpain cleavage of NCX3 in AD brain and therefore that reduced NCX3 activity could contribute to the sustained increases in intraneuronal calcium concentrations that are associated with synaptic and neuronal dysfunction in AD.
Abstract.
Author URL.
Killick R, Ribe EM, Al-Shawi R, Malik B, Hooper C, Fernandes C, Dobson R, Nolan PM, Lourdusamy A, Furney S, et al (2014). Clusterin regulates β-amyloid toxicity via Dickkopf-1-driven induction of the wnt-PCP-JNK pathway.
Molecular Psychiatry,
19(1), 88-98.
Abstract:
Clusterin regulates β-amyloid toxicity via Dickkopf-1-driven induction of the wnt-PCP-JNK pathway
Although the mechanism of Aβ action in the pathogenesis of Alzheimer's disease (AD) has remained elusive, it is known to increase the expression of the antagonist of canonical wnt signalling, Dickkopf-1 (Dkk1), whereas the silencing of Dkk1 blocks Aβ neurotoxicity. We asked if clusterin, known to be regulated by wnt, is part of an Aβ/Dkk1 neurotoxic pathway. Knockdown of clusterin in primary neurons reduced Aβ toxicity and DKK1 upregulation and, conversely, Aβ increased intracellular clusterin and decreased clusterin protein secretion, resulting in the p53-dependent induction of DKK1. To further elucidate how the clusterin-dependent induction of Dkk1 by Aβ mediates neurotoxicity, we measured the effects of Aβ and Dkk1 protein on whole-genome expression in primary neurons, finding a common pathway suggestive of activation of wnt-planar cell polarity (PCP)-c-Jun N-terminal kinase (JNK) signalling leading to the induction of genes including EGR1 (early growth response-1), NAB2 (Ngfi-A-binding protein-2) and KLF10 (Krüppel-like factor-10) that, when individually silenced, protected against Aβ neurotoxicity and/or tau phosphorylation. Neuronal overexpression of Dkk1 in transgenic mice mimicked this Aβ-induced pathway and resulted in age-dependent increases in tau phosphorylation in hippocampus and cognitive impairment. Furthermore, we show that this Dkk1/wnt-PCP-JNK pathway is active in an Aβ-based mouse model of AD and in AD brain, but not in a tau-based mouse model or in frontotemporal dementia brain. Thus, we have identified a pathway whereby Aβ induces a clusterin/p53/Dkk1/wnt-PCP-JNK pathway, which drives the upregulation of several genes that mediate the development of AD-like neuropathologies, thereby providing new mechanistic insights into the action of Aβ in neurodegenerative diseases. © 2014 Macmillan Publishers Limited.
Abstract.
Killick R, Ribe EM, Al-Shawi R, Malik B, Hooper C, Fernandes C, Dobson R, Nolan PM, Lourdusamy A, Furney S, et al (2014). Clusterin regulates β-amyloid toxicity via Dickkopf-1-driven induction of the wnt-PCP-JNK pathway.
Mol Psychiatry,
19(1), 88-98.
Abstract:
Clusterin regulates β-amyloid toxicity via Dickkopf-1-driven induction of the wnt-PCP-JNK pathway.
Although the mechanism of Aβ action in the pathogenesis of Alzheimer's disease (AD) has remained elusive, it is known to increase the expression of the antagonist of canonical wnt signalling, Dickkopf-1 (Dkk1), whereas the silencing of Dkk1 blocks Aβ neurotoxicity. We asked if clusterin, known to be regulated by wnt, is part of an Aβ/Dkk1 neurotoxic pathway. Knockdown of clusterin in primary neurons reduced Aβ toxicity and DKK1 upregulation and, conversely, Aβ increased intracellular clusterin and decreased clusterin protein secretion, resulting in the p53-dependent induction of DKK1. To further elucidate how the clusterin-dependent induction of Dkk1 by Aβ mediates neurotoxicity, we measured the effects of Aβ and Dkk1 protein on whole-genome expression in primary neurons, finding a common pathway suggestive of activation of wnt-planar cell polarity (PCP)-c-Jun N-terminal kinase (JNK) signalling leading to the induction of genes including EGR1 (early growth response-1), NAB2 (Ngfi-A-binding protein-2) and KLF10 (Krüppel-like factor-10) that, when individually silenced, protected against Aβ neurotoxicity and/or tau phosphorylation. Neuronal overexpression of Dkk1 in transgenic mice mimicked this Aβ-induced pathway and resulted in age-dependent increases in tau phosphorylation in hippocampus and cognitive impairment. Furthermore, we show that this Dkk1/wnt-PCP-JNK pathway is active in an Aβ-based mouse model of AD and in AD brain, but not in a tau-based mouse model or in frontotemporal dementia brain. Thus, we have identified a pathway whereby Aβ induces a clusterin/p53/Dkk1/wnt-PCP-JNK pathway, which drives the upregulation of several genes that mediate the development of AD-like neuropathologies, thereby providing new mechanistic insights into the action of Aβ in neurodegenerative diseases.
Abstract.
Author URL.
Hanger DP, Lau DHW, Phillips EC, Bondulich MK, Guo T, Woodward BW, Pooler AM, Noble W (2014). Intracellular and extracellular roles for tau in neurodegenerative disease.
J Alzheimers Dis,
40 Suppl 1, S37-S45.
Abstract:
Intracellular and extracellular roles for tau in neurodegenerative disease.
Tau has a well-established role as a microtubule-associated protein, in which it stabilizes the neuronal cytoskeleton. This function of tau is influenced by tau phosphorylation state, which is significantly increased in Alzheimer's disease and related tauopathies. Disruptions to the cytoskeleton in disease-affected neurons include reduced length and numbers of stable microtubules, and their diminished stability is associated with increased tau phosphorylation in disease. Tau is also localized in the nucleus and plasma membrane of neurons, where it could have roles in DNA repair and cell signaling. Most recently, potential roles for extracellular tau have been highlighted. The release of tau from neurons is a physiological process that can be regulated by neuronal activity and extracellular tau may play a role in inter-neuronal signaling. In addition, recent studies have suggested that the misfolding of tau in diseased brain leads to abnormal conformations of tau that can be taken up by neighboring neurons. Such a mechanism may be responsible for the apparent prion-like spreading of tau pathology through the brain, which occurs in parallel with clinical progression in the tauopathies. The relationship between tau localization in neurons, tau release, and tau uptake remains to be established, as does the function of extracellular tau. More research is needed to identify disease mechanisms that drive the release and propagation of pathogenic tau and to determine the impact of extracellular tau on cognitive decline in neurodegenerative disease.
Abstract.
Author URL.
Vagnoni A, Glennon EBC, Perkinton MS, Gray EH, Noble W, Miller CCJ (2013). Loss of c-Jun N-terminal kinase-interacting protein-1 does not affect axonal transport of the amyloid precursor protein or Aβ production.
Hum Mol Genet,
22(22), 4646-4652.
Abstract:
Loss of c-Jun N-terminal kinase-interacting protein-1 does not affect axonal transport of the amyloid precursor protein or Aβ production.
Disruption to axonal transport is an early pathological feature in Alzheimer's disease. The amyloid precursor protein (APP) is a key axonal transport cargo in Alzheimer's disease since perturbation of its transport increases APP processing and production of amyloid-β peptide (Aβ) that is deposited in the brains of Alzheimer's disease patients. APP is transported anterogradely through axons on kinesin-1 motors. One favoured route for attachment of APP to kinesin-1 involves the scaffolding protein c-Jun N-terminal kinase-interacting protein-1 (JIP1), which has been shown to bind both APP and kinesin-1 light chain (KLC). However, direct experimental evidence to support a role of JIP1 in APP transport is lacking. Notably, the effect of loss of JIP1 on movement of APP through axons of living neurons, and the impact of such loss on APP processing and Aβ production has not been reported. To address these issues, we monitored how siRNA mediated loss of JIP1 influenced transport of enhanced green fluorescent protein (EGFP)-tagged APP through axons and production of endogenous Aβ in living neurons. Surprisingly, we found that knockdown of JIP1 did not affect either APP transport or Aβ production. These results have important implications for our understanding of APP trafficking in Alzheimer's disease.
Abstract.
Author URL.
Pooler AM, Phillips EC, Lau DHW, Noble W, Hanger DP (2013). Physiological release of endogenous tau is stimulated by neuronal activity.
EMBO Rep,
14(4), 389-394.
Abstract:
Physiological release of endogenous tau is stimulated by neuronal activity.
Propagation of tau pathology is linked with progressive neurodegeneration, but the mechanism underlying trans-synaptic spread of tau is unknown. We show that stimulation of neuronal activity, or AMPA receptor activation, induces tau release from healthy, mature cortical neurons. Notably, phosphorylation of extracellular tau appears reduced in comparison with intracellular tau. We also find that AMPA-induced release of tau is calcium-dependent. Blocking pre-synaptic vesicle release by tetanus toxin and inhibiting neuronal activity with tetrodotoxin both significantly impair AMPA-mediated tau release. Tau secretion is therefore a regulatable process, dysregulation of which could lead to the spread of tau pathology in disease.
Abstract.
Author URL.
Tavares IA, Touma D, Lynham S, Troakes C, Schober M, Causevic M, Garg R, Noble W, Killick R, Bodi I, et al (2013). Prostate-derived sterile 20-like kinases (PSKs/TAOKs) phosphorylate tau protein and are activated in tangle-bearing neurons in Alzheimer disease.
J Biol Chem,
288(21), 15418-15429.
Abstract:
Prostate-derived sterile 20-like kinases (PSKs/TAOKs) phosphorylate tau protein and are activated in tangle-bearing neurons in Alzheimer disease.
In Alzheimer disease (AD), the microtubule-associated protein tau is highly phosphorylated and aggregates into characteristic neurofibrillary tangles. Prostate-derived sterile 20-like kinases (PSKs/TAOKs) 1 and 2, members of the sterile 20 family of kinases, have been shown to regulate microtubule stability and organization. Here we show that tau is a good substrate for PSK1 and PSK2 phosphorylation with mass spectrometric analysis of phosphorylated tau revealing more than 40 tau residues as targets of these kinases. Notably, phosphorylated residues include motifs located within the microtubule-binding repeat domain on tau (Ser-262, Ser-324, and Ser-356), sites that are known to regulate tau-microtubule interactions. PSK catalytic activity is enhanced in the entorhinal cortex and hippocampus, areas of the brain that are most susceptible to Alzheimer pathology, in comparison with the cerebellum, which is relatively spared. Activated PSK is associated with neurofibrillary tangles, dystrophic neurites surrounding neuritic plaques, neuropil threads, and granulovacuolar degeneration bodies in AD brain. By contrast, activated PSKs and phosphorylated tau are rarely detectible in immunostained control human brain. Our results demonstrate that tau is a substrate for PSK and suggest that this family of kinases could contribute to the development of AD pathology and dementia.
Abstract.
Author URL.
Rodríguez-Martín T, Cuchillo-Ibáñez I, Noble W, Nyenya F, Anderton BH, Hanger DP (2013). Tau phosphorylation affects its axonal transport and degradation.
Neurobiol Aging,
34(9), 2146-2157.
Abstract:
Tau phosphorylation affects its axonal transport and degradation.
Phosphorylated forms of microtubule-associated protein tau accumulate in neurofibrillary tangles in Alzheimer's disease. To investigate the effects of specific phosphorylated tau residues on its function, wild type or phosphomutant tau was expressed in cells. Elevated tau phosphorylation decreased its microtubule binding and bundling, and increased the number of motile tau particles, without affecting axonal transport kinetics. In contrast, reducing tau phosphorylation enhanced the amount of tau bound to microtubules and inhibited axonal transport of tau. To determine whether differential tau clearance is responsible for the increase in phosphomimic tau, we inhibited autophagy in neurons which resulted in a 3-fold accumulation of phosphomimic tau compared with wild type tau, and endogenous tau was unaffected. In autophagy-deficient mouse embryonic fibroblasts, but not in neurons, proteasomal degradation of phosphomutant tau was also reduced compared with wild type tau. Therefore, autophagic and proteasomal pathways are involved in tau degradation, with autophagy appearing to be the primary route for clearing phosphorylated tau in neurons. Defective autophagy might contribute to the accumulaton of tau in neurodegenerative diseases.
Abstract.
Author URL.
Noble W, Hanger DP, Miller CCJ, Lovestone S (2013). The importance of tau phosphorylation for neurodegenerative diseases.
Front Neurol,
4Abstract:
The importance of tau phosphorylation for neurodegenerative diseases.
Fibrillar deposits of highly phosphorylated tau are a key pathological feature of several neurodegenerative tauopathies including Alzheimer's disease (AD) and some frontotemporal dementias. Increasing evidence suggests that the presence of these end-stage neurofibrillary lesions do not cause neuronal loss, but rather that alterations to soluble tau proteins induce neurodegeneration. In particular, aberrant tau phosphorylation is acknowledged to be a key disease process, influencing tau structure, distribution, and function in neurons. Although typically described as a cytosolic protein that associates with microtubules and regulates axonal transport, several additional functions of tau have recently been demonstrated, including roles in DNA stabilization, and synaptic function. Most recently, studies examining the trans-synaptic spread of tau pathology in disease models have suggested a potential role for extracellular tau in cell signaling pathways intrinsic to neurodegeneration. Here we review the evidence showing that tau phosphorylation plays a key role in neurodegenerative tauopathies. We also comment on the tractability of altering phosphorylation-dependent tau functions for therapeutic intervention in AD and related disorders.
Abstract.
Author URL.
Vagnoni A, Perkinton MS, Gray EH, Francis PT, Noble W, Miller CCJ (2012). Calsyntenin-1 mediates axonal transport of the amyloid precursor protein and regulates Aβ production.
Hum Mol Genet,
21(13), 2845-2854.
Abstract:
Calsyntenin-1 mediates axonal transport of the amyloid precursor protein and regulates Aβ production.
Understanding the mechanisms that control processing of the amyloid precursor protein (APP) to produce amyloid-β (Aβ) peptide represents a key area of Alzheimer's disease research. Here, we show that siRNA-mediated loss of calsyntenin-1 in cultured neurons alters APP processing to increase production of Aβ. We also show that calsyntenin-1 is reduced in Alzheimer's disease brains and that the extent of this reduction correlates with increased Aβ levels. Calsyntenin-1 is a ligand for kinesin-1 light chains and APP is transported through axons on kinesin-1 molecular motors. Defects in axonal transport are an early pathological feature in Alzheimer's disease and defective APP transport is known to increase Aβ production. We show that calsyntenin-1 and APP are co-transported through axons and that siRNA-induced loss of calsyntenin-1 markedly disrupts axonal transport of APP. Thus, perturbation to axonal transport of APP on calsyntenin-1 containing carriers induces alterations to APP processing that increase production of Aβ. Together, our findings suggest that disruption of calsyntenin-1-associated axonal transport of APP is a pathogenic mechanism in Alzheimer's disease.
Abstract.
Author URL.
Pooler AM, Usardi A, Evans CJ, Philpott KL, Noble W, Hanger DP (2012). Dynamic association of tau with neuronal membranes is regulated by phosphorylation.
Neurobiol Aging,
33(2), 431.e27-431.e38.
Abstract:
Dynamic association of tau with neuronal membranes is regulated by phosphorylation.
Tau is an abundant cytosolic protein which regulates cytoskeletal stability by associating with microtubules in a phosphorylation-dependent manner. We have found a significant proportion of tau is located in the membrane fraction of rat cortical neurons and is dephosphorylated, at least at Tau-1 (Ser199/Ser202), AT8 (Ser199/Ser202/Thr205) and PHF-1 (Ser396/Ser404) epitopes. Inhibition of tau kinases casein kinase 1 (CK1) or glycogen synthase kinase-3 decreased tau phosphorylation and significantly increased amounts of tau in the membrane fraction. Mutation of serine/threonine residues to glutamate to mimic phosphorylation in the N-terminal, but not C-terminal, region of tau prevented its membrane localization in transfected cells, demonstrating that the phosphorylation state of tau directly impacts its localization. Inhibiting CK1 in neurons lacking the tyrosine kinase fyn also induced tau dephosphorylation but did not affect its membrane association. Furthermore, inhibition of CK1 increased binding of neuronal tau to the fyn-SH3 domain. We conclude that trafficking of tau between the cytosol and the neuronal membrane is dynamically regulated by tau phosphorylation through a mechanism dependent on fyn expression.
Abstract.
Author URL.
Johnson R, Noble W, Tartaglia GG, Buckley NJ (2012). Neurodegeneration as an RNA disorder.
Prog Neurobiol,
99(3), 293-315.
Abstract:
Neurodegeneration as an RNA disorder.
Neurodegenerative diseases constitute one of the single most important public health challenges of the coming decades, and yet we presently have only a limited understanding of the underlying genetic, cellular and molecular causes. As a result, no effective disease-modifying therapies are currently available, and no method exists to allow detection at early disease stages, and as a result diagnoses are only made decades after disease pathogenesis, by which time the majority of physical damage has already occurred. Since the sequencing of the human genome, we have come to appreciate that the transcriptional output of the human genome is extremely rich in non-protein coding RNAs (ncRNAs). This heterogeneous class of transcripts is widely expressed in the nervous system, and is likely to play many crucial roles in the development and functioning of this organ. Most exciting, evidence has recently been presented that ncRNAs play central, but hitherto unappreciated roles in neurodegenerative processes. Here, we review the diverse available evidence demonstrating involvement of ncRNAs in neurodegenerative diseases, and discuss their possible implications in the development of therapies and biomarkers for these conditions.
Abstract.
Author URL.
Noble W, Pooler AM, Hanger DP (2011). Advances in tau-based drug discovery.
Expert Opin Drug Discov,
6(8), 797-810.
Abstract:
Advances in tau-based drug discovery.
INTRODUCTION: Tauopathies, including Alzheimer's disease (AD) and some frontotemporal dementias, are neurodegenerative diseases characterised by pathological lesions comprised of tau protein. There is currently a significant and urgent unmet need for disease-modifying therapies for these conditions and recently attention has turned to tau as a potential target for intervention. AREAS COVERED: Increasing evidence has highlighted pathways associated with tau-mediated neurodegeneration as important targets for drug development. Here, the authors review recently published papers in this area and summarise the genetic and pharmacological approaches that have shown efficacy in reducing tau-associated neurodegeneration. These include the use of agents to prevent abnormal tau processing and increase tau clearance, therapies targeting the immune system, and the manipulation of tau pre-mRNA to modify tau isoform expression. EXPERT OPINION: Several small molecule tau-based treatments are currently being assessed in clinical trials, the outcomes of which are eagerly awaited. Current evidence suggests that therapies targeting tau are likely, at least in part, to form the basis of an effective and safe treatment for Alzheimer's disease and related neurodegenerative disorders in which tau deposition is evident.
Abstract.
Author URL.
Garwood CJ, Pooler AM, Atherton J, Hanger DP, Noble W (2011). Astrocytes are important mediators of Aβ-induced neurotoxicity and tau phosphorylation in primary culture.
Cell Death Dis,
2(6).
Abstract:
Astrocytes are important mediators of Aβ-induced neurotoxicity and tau phosphorylation in primary culture.
Alzheimer's disease (AD) is pathologically characterised by the age-dependent deposition of β-amyloid (Aβ) in senile plaques, intraneuronal accumulation of tau as neurofibrillary tangles, synaptic dysfunction and neuronal death. Neuroinflammation, typified by the accumulation of activated microglia and reactive astrocytes, is believed to modulate the development and/or progression of AD. We have used primary rat neuronal, astrocytic and mixed cortical cultures to investigate the contribution of astrocyte-mediated inflammatory responses during Aβ-induced neuronal loss. We report that the presence of small numbers of astrocytes exacerbate Aβ-induced neuronal death, caspase-3 activation and the production of caspase-3-cleaved tau. Furthermore, we show that astrocytes are essential for the Aβ-induced tau phosphorylation observed in primary neurons. The release of soluble inflammatory factor(s) from astrocytes accompanies these events, and inhibition of astrocyte activation with the anti-inflammatory agent, minocycline, reduces astrocytic inflammatory responses and the associated neuronal loss. Aβ-induced increases in caspase-3 activation and the production of caspase-3-truncated tau species in neurons were reduced when the astrocytic response was attenuated with minocycline. Taken together, these results show that astrocytes are important mediators of the neurotoxic events downstream of elevated Aβ in models of AD, and suggest that mechanisms underlying pro-inflammatory cytokine release might be an important target for therapy.
Abstract.
Author URL.
Hanger DP, Noble W (2011). Functional implications of glycogen synthase kinase-3-mediated tau phosphorylation.
Int J Alzheimers Dis,
2011Abstract:
Functional implications of glycogen synthase kinase-3-mediated tau phosphorylation.
Tau is primarily a neuronal microtubule-associated protein that has functions related to the stabilisation of microtubules. Phosphorylation of tau is an important dynamic and regulatory element involved in the binding of tau to tubulin. Thus, highly phosphorylated tau is more likely to be present in the cytosolic compartment of neurons, whereas reduced phosphate burden allows tau to bind to and stabilise the microtubule cytoskeleton. Highly phosphorylated forms of tau are deposited in the brain in a range of neurodegenerative disorders including Alzheimer's disease, progressive supranuclear palsy, and frontotemporal lobar degeneration associated with Pick bodies. A key candidate kinase for both physiological and pathological tau phosphorylation is glycogen synthase kinase-3 (GSK-3). Multiple phosphorylation sites have been identified on tau exposed to GSK-3 in vitro and in cells. In this review, we highlight recent data suggesting a role for GSK-3 activity on physiological tau function and on tau dysfunction in neurodegenerative disease.
Abstract.
Author URL.
Usardi A, Pooler AM, Seereeram A, Reynolds CH, Derkinderen P, Anderton B, Hanger DP, Noble W, Williamson R (2011). Tyrosine phosphorylation of tau regulates its interactions with Fyn SH2 domains, but not SH3 domains, altering the cellular localization of tau.
FEBS J,
278(16), 2927-2937.
Abstract:
Tyrosine phosphorylation of tau regulates its interactions with Fyn SH2 domains, but not SH3 domains, altering the cellular localization of tau.
Recent reports have demonstrated that interactions between the microtubule-associated protein tau and the nonreceptor tyrosine kinase Fyn play a critical role in mediating synaptic toxicity and neuronal loss in response to β-amyloid (Aβ) in models of Alzheimer's disease. Disruption of interactions between Fyn and tau may thus have the potential to protect neurons from Aβ-induced neurotoxicity. Here, we investigated tau and Fyn interactions and the potential implications for positioning of these proteins in membrane microdomains. Tau is known to bind to Fyn via its Src-homology (SH)3 domain, an association regulated by phosphorylation of PXXP motifs in tau. Here, we show that Pro216 within the PXXP(213-216) motif in tau plays an important role in mediating the interaction of tau with Fyn-SH3. We also show that tau interacts with the SH2 domain of Fyn, and that this association, unlike that of Fyn-SH3, is influenced by Fyn-mediated tyrosine phosphorylation of tau. In particular, phosphorylation of tau at Tyr18, a reported target of Fyn, is important for mediating Fyn-SH2-tau interactions. Finally, we show that tyrosine phosphorylation influences the localization of tau to detergent-resistant membrane microdomains in primary cortical neurons, and that this trafficking is Fyn-dependent. These findings may have implications for the development of novel therapeutic strategies aimed at disrupting the tau/Fyn-mediated synaptic dysfunction that occurs in response to elevated Aβ levels in neurodegenerative disease.
Abstract.
Author URL.
Garwood CJ, Cooper JD, Hanger DP, Noble W (2010). Anti-inflammatory impact of minocycline in a mouse model of tauopathy.
Front Psychiatry,
1Abstract:
Anti-inflammatory impact of minocycline in a mouse model of tauopathy.
Alzheimer's disease (AD) is characterized by the extracellular deposition of β-amyloid in senile plaques, the intraneuronal accumulation of hyperphosphorylated tau aggregates as neurofibrillary tangles, and progressive neuronal loss leading to the onset of dementia. Increasing evidence suggests that neuroinflammatory processes contribute to the progression of AD. Minocycline is a semi-synthetic tetracycline derivative commonly used in the treatment of acne. Many studies have revealed that minocycline also has potent anti-inflammatory actions that are neuroprotective in rodent models of Huntington's disease, Parkinson's disease and motor neuron disease. Recently, we demonstrated that minocycline reduces the development of abnormal tau species in the htau mouse model of Alzheimer's disease. We have now extended these findings by examining the impact of minocycline on inflammatory processes in htau mice. Immunohistochemical analysis revealed that minocycline treatment resulted in fewer activated astrocytes in several cortical regions of htau mice, but did not affect astrocytosis in the hippocampus. We found htau mice have significantly elevated amounts of several cortical pro-inflammatory cytokines. In addition, we find that minocycline treatment significantly reduced the amounts of several inflammatory factors, including monocyte chemoattractant proteins 1 and 5, interleukins -6 and -10, eotaxin, and I-309. Furthermore, the reduced amounts of these cytokines significantly correlated with the amount of tau phosphorylated at Ser396/404 in the cortex of htau mice. These results may reveal new cytokine targets of minocycline that could be associated with its inhibition of tau pathology development in vivo. It is possible that further investigation of the role of these cytokines in neurodegenerative processes may identify novel therapeutic targets for Alzheimer's disease and related disorders.
Abstract.
Author URL.
Noble W, Burns MP (2010). Challenges in neurodegeneration research.
Front Psychiatry,
1 Author URL.
Noble W, Hanger DP, Gallo J-M (2010). Transgenic mouse models of tauopathy in drug discovery.
CNS Neurol Disord Drug Targets,
9(4), 403-428.
Abstract:
Transgenic mouse models of tauopathy in drug discovery.
Tauopathies, including Alzheimer's disease, are neurodegenerative diseases characterized by the deposition of hyperphosphorylated tau protein in the central nervous system, and are the major cause of dementia in later life. Considerable advances have been made in developing mouse models that recapitulate, to varying extents, the development of human tau pathology, and the learning and memory deficits characteristic of some tauopathies. Furthermore, such models have been used to show promising disease-modifying effects in pre-clinical testing of new therapeutics. Various strategies have been utilised to generate mouse models of tauopathies. Some of the most enlightening models developed to date either constitutively or inducibly express pathogenic tau mutations. These animals have been instrumental in defining critical disease-related mechanisms, including the observation that tangles are not the toxic form of tau in disease. Here, we discuss the strengths and weaknesses of well characterised transgenic models that emulate human tauopathy, and include a comprehensive listing of the main phenotypic characteristics of all reported tau transgenic rodents. We summarise the use of tau mice for the development and evaluation of new therapeutic approaches, and their utility in identifying novel drug targets. In addition, we review the parameters to be considered in the development of the next generation of mouse models of tauopathy, aimed at further increasing our understanding of disease aetiology and in evaluating novel treatments.
Abstract.
Author URL.
Wray S, Noble W (2009). Linking amyloid and tau pathology in Alzheimer's disease: the role of membrane cholesterol in Abeta-mediated tau toxicity.
J Neurosci,
29(31), 9665-9667.
Author URL.
Hanger DP, Seereeram A, Noble W (2009). Mediators of tau phosphorylation in the pathogenesis of Alzheimer's disease.
Expert Rev Neurother,
9(11), 1647-1666.
Abstract:
Mediators of tau phosphorylation in the pathogenesis of Alzheimer's disease.
The need for disease-modifying drugs for Alzheimer's disease has become increasingly important owing to escalating disease prevalence and the associated socio-economic burden. Until recently, reducing brain amyloid accumulation has been the main therapeutic focus; however, increasing evidence suggests that targeting abnormal tau phosphorylation could be beneficial. Tau is phosphorylated by several protein kinases and this is balanced by dephosphorylation by protein phosphatases. Phosphorylation at specific sites can influence the physiological functions of tau, including its role in binding to and stabilizing the neuronal cytoskeleton. aberrant phosphorylation of tau could render it susceptible to potentially pathogenic alterations, including conformational changes, proteolytic cleavage and aggregation. While strategies that reduce tau phosphorylation in transgenic models of disease have been promising, our understanding of the mechanisms through which tau becomes abnormally phosphorylated in disease is lacking.
Abstract.
Author URL.
Noble W, Garwood CJ, Hanger DP (2009). Minocycline as a potential therapeutic agent in neurodegenerative disorders characterised by protein misfolding.
Prion,
3(2), 78-83.
Abstract:
Minocycline as a potential therapeutic agent in neurodegenerative disorders characterised by protein misfolding.
Many neurodegenerative disorders share common features including the accumulation of aggregated misfolded proteins, neuroinflammation and the induction of apoptosis. While the contributions of each of these individual elements to neuronal death remain unclear, a commonly used antibiotic, minocycline, has been shown to reduce the progression and severity of disease in several models of neurodegeneration by variously downregulating these molecular pathways. Here we discuss the evidence for the potential of minocycline as a broad-specificity therapeutic agent for those neurodegenerative diseases that are characterized by the presence of misfolded proteins.
Abstract.
Author URL.
Noble W, Garwood C, Stephenson J, Kinsey AM, Hanger DP, Anderton BH (2009). Minocycline reduces the development of abnormal tau species in models of Alzheimer's disease.
FASEB J,
23(3), 739-750.
Abstract:
Minocycline reduces the development of abnormal tau species in models of Alzheimer's disease.
Alzheimer's disease (AD) is characterized by the presence of neurofibrillary tangles of hyperphosphorylated, aggregated tau protein and extracellular deposits of beta-amyloid peptide. Increased beta-amyloid levels are thought to precede tangle formation, but tau pathology is more closely related to neuronal death. Minocycline, a tetracycline derivative, has potent antiinflammatory, antiapoptotic, and neuroprotective effects in several models of neurodegenerative disease, including models of AD with amyloid pathology. We have used both in vitro and in vivo models of AD to determine whether minocycline may have therapeutic efficacy against tau pathology. In primary cortical neurons, minocycline prevents beta-amyloid-induced neuronal death, reduces caspase-3 activation, and lowers generation of caspase-3-cleaved tau fragments. Treatment of tangle-forming transgenic mice (htau line) with minocycline results in reduced levels of tau phosphorylation and insoluble tau aggregates. The in vivo effects of minocycline are also associated with reduced caspase-3 activation and lowered tau cleavage by caspase-3. In tau mice, we find that conformational changes in tau are susceptible to minocycline treatment, but are not directly associated with the amount of tau fragments produced, highlighting a dissociation between the development of these pathological tau species. These results suggest a possible novel therapeutic role for minocycline in the treatment of AD and related tauopathies.
Abstract.
Author URL.
Hanger DP, Anderton BH, Noble W (2009). Tau phosphorylation: the therapeutic challenge for neurodegenerative disease.
Trends Mol Med,
15(3), 112-119.
Abstract:
Tau phosphorylation: the therapeutic challenge for neurodegenerative disease.
The microtubule-associated protein tau is integral to the pathogenesis of Alzheimer's disease (AD), as well as several related disorders, termed tauopathies, in which tau is deposited in affected brain regions. In the tauopathies, pathological tau is in an elevated state of phosphorylation and is aberrantly cleaved. It also exhibits abnormal conformations and becomes aggregated, resulting in neurofibrillary tau pathology. Recent evidence suggests that relatively early disease-associated changes in soluble tau proteins, including phosphorylation, are involved in the induction of neuronal death. Here, we summarize recent developments that suggest new therapeutic strategies to prevent or reduce the progression of pathology in the tauopathies. A list of tau phosphorylation sites identified in the tauopathies and in controls accompanies this review.
Abstract.
Author URL.
Lebouvier T, Scales TME, Williamson R, Noble W, Duyckaerts C, Hanger DP, Reynolds CH, Anderton BH, Derkinderen P (2009). The microtubule-associated protein tau is also phosphorylated on tyrosine.
J Alzheimers Dis,
18(1), 1-9.
Abstract:
The microtubule-associated protein tau is also phosphorylated on tyrosine.
Tau protein is the principal component of the neurofibrillary tangles found in Alzheimer's disease (AD), where it is hyperphosphorylated on serine and threonine residues. It is hypothesized that this hyperphosphorylation contributes to neurodegeneration through the destabilization of microtubules. There is now evidence that phosphorylation of tau can also occur on tyrosine residues. Human tau has five tyrosines numbered 18, 29, 197, 310, and 394, according to the sequence of the longest CNS isoform. Tyrosines 18, 197, and 394 have been shown to be phosphorylated in the brain of patients with AD whereas tyrosine 394 is the only residue that has been described to date that is phosphorylated in physiological conditions. Src family kinases and spleen tyrosine kinase (Syk) have been shown to phosphorylate tyrosine 18 while c-Abl is capable of phosphorylating tyrosine 394. Recently, a dual specificity kinase termed TTBK1 has been characterized in human brain and shown to be able to phosphorylate residue 197 of tau. Data about the role of tau tyrosine phosphorylation in neuronal physiology are still scarce and preliminary. In contrast, there is mounting evidence suggesting that tau tyrosine phosphorylation is an early event in the pathophysiology of AD and that Fyn and c-Abl are critical in the neurodegenerative process which occurs in tauopathies.
Abstract.
Author URL.
Cole AR, Noble W, van Aalten L, Plattner F, Meimaridou R, Hogan D, Taylor M, LaFrancois J, Gunn-Moore F, Verkhratsky A, et al (2007). Collapsin response mediator protein-2 hyperphosphorylation is an early event in Alzheimer's disease progression.
J Neurochem,
103(3), 1132-1144.
Abstract:
Collapsin response mediator protein-2 hyperphosphorylation is an early event in Alzheimer's disease progression.
Collapsin response mediator protein 2 (CRMP2) is an abundant brain-enriched protein that can regulate microtubule assembly in neurons. This function of CRMP2 is regulated by phosphorylation by glycogen synthase kinase 3 (GSK3) and cyclin-dependent kinase 5 (Cdk5). Here, using novel phosphospecific antibodies, we demonstrate that phosphorylation of CRMP2 at Ser522 (Cdk5-mediated) is increased in Alzheimer's disease (AD) brain, while CRMP2 expression and phosphorylation of the closely related isoform CRMP4 are not altered. In addition, CRMP2 phosphorylation at the Cdk5 and GSK3 sites is increased in cortex and hippocampus of the triple transgenic mouse [presenilin-1 (PS1)(M146V)KI; Thy1.2-amyloid precursor protein (APP)(swe); Thy1.2tau(P301L)] that develops AD-like plaques and tangles, as well as the double (PS1(M146V)KI; Thy1.2-APP(swe)) transgenic mouse. The hyperphosphorylation is similar in magnitude to that in human AD and is evident by 2 months of age, ahead of plaque or tangle formation. Meanwhile, there is no change in CRMP2 phosphorylation in two other transgenic mouse lines that display elevated amyloid beta peptide levels (Tg2576 and APP/amyloid beta-binding alcohol dehydrogenase). Similarly, CRMP2 phosphorylation is normal in hippocampus and cortex of Tau(P301L) mice that develop tangles but not plaques. These observations implicate hyperphosphorylation of CRMP2 as an early event in the development of AD and suggest that it can be induced by a severe APP over-expression and/or processing defect.
Abstract.
Author URL.
Kelleher I, Garwood C, Hanger DP, Anderton BH, Noble W (2007). Kinase activities increase during the development of tauopathy in htau mice.
J Neurochem,
103(6), 2256-2267.
Abstract:
Kinase activities increase during the development of tauopathy in htau mice.
Hyperphosphorylated tau aggregates are the core constituent of neurofibrillary tangles. Recent research has shown a division between the presence of tangles, neurodegeneration and subsequent memory impairment, raising the possibility that an earlier pre-aggregated form of tau may be toxic. To gain further insight into the relationship between abnormal forms of tau, we have analyzed pathological changes in tau during tauopathy development in tangle-forming transgenic mice. In addition, we have quantified changes in the endogenous levels of a panel of protein kinases. We show progressive increases in aggregated tau and disease-specific conformational change, with hyperphosphorylation occurring in an age-dependent manner at specific sites. There were significant correlations between specific phosphorylation changes and amounts of aggregated tau and and abnormal tau conformations. of the protein kinases tested, we found increases in phosphorylated (activated) p38 and the cyclin-dependent kinase-5 neuronal activators, p35 and p25, with aging, in the htau line, but not in non-tangle-forming control mice. Changes in tau kinases correlated with the amount of tau present in abnormal conformations and with insoluble tau in htau mice. These data suggest that cdk5 and p38 may be associated with pathological changes in wild-type human tau during the progressive development of tauopathy.
Abstract.
Author URL.
Gallo J-M, Noble W, Martin TR (2007). RNA and protein-dependent mechanisms in tauopathies: consequences for therapeutic strategies.
Cell Mol Life Sci,
64(13), 1701-1714.
Abstract:
RNA and protein-dependent mechanisms in tauopathies: consequences for therapeutic strategies.
Tauopathies are a group of neurodegenerative diseases characterised by intracellular deposits of the microtubule-associated protein tau. The most typical example of a tauopathy is Alzheimer's disease. The importance of tau in neuronal dysfunction and degeneration has been demonstrated by the discovery of dominant mutations in the MAPT gene, encoding tau, in some rare dementias. Recent developments have shed light on the significance of tau phosphorylation and aggregation in pathogenesis. Furthermore, emerging evidence reveals the central role played by tau pre-mRNA processing in tauopathies. The present review focuses on the current understanding of tau-dependent pathogenic mechanisms and how realistic therapies for tauopathies can be developed.
Abstract.
Author URL.
Noble W, Planel E, Zehr C, Olm V, Meyerson J, Suleman F, Gaynor K, Wang L, LaFrancois J, Feinstein B, et al (2005). Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo.
Proc Natl Acad Sci U S A,
102(19), 6990-6995.
Abstract:
Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo.
Neurofibrillary tangles composed of hyperphosphorylated, aggregated tau are a common pathological feature of tauopathies, including Alzheimer's disease. Abnormal phosphorylation of tau by kinases or phosphatases has been proposed as a pathogenic mechanism in tangle formation. To investigate whether kinase inhibition can reduce tauopathy and the degeneration associated with it in vivo, transgenic mice overexpressing mutant human tau were treated with the glycogen synthase kinase-3 (GSK-3) inhibitor lithium chloride. Treatment resulted in significant inhibition of GSK-3 activity. Lithium administration also resulted in significantly lower levels of phosphorylation at several epitopes of tau known to be hyperphosphorylated in Alzheimer's disease and significantly reduced levels of aggregated, insoluble tau. Administration of a second GSK-3 inhibitor also correlated with reduced insoluble tau levels, supporting the idea that lithium exerts its effect through GSK-3 inhibition. Levels of aggregated tau correlated strongly with degree of axonal degeneration, and lithium-chloride-treated mice showed less degeneration if administration was started during early stages of tangle development. These results support the idea that kinases are involved in tauopathy progression and that kinase inhibitors may be effective therapeutically.
Abstract.
Author URL.
Utton MA, Noble WJ, Hill JE, Anderton BH, Hanger DP (2005). Molecular motors implicated in the axonal transport of tau and α-synuclein.
Journal of Cell Science,
118(20), 4645-4654.
Abstract:
Molecular motors implicated in the axonal transport of tau and α-synuclein
Tau and α-synuclein are both proteins implicated in the pathology of neurodegenerative disease. Here we have investigated the mechanisms of axonal transport of tau and α-synuclein, because failure of axonal transport has been implicated in the development of several neurodegenerative disorders. We found that the transport of both of these proteins depend on an intact microtubule- but not actin-cytoskeleton, and that tau and α-synuclein both move at overall slow rates of transport. We used time-lapse video microscopy to obtain images of live neurons that had been transfected with plasmids expressing proteins tagged with enhanced green fluorescent protein. We found that particulate structures containing tau or α-synuclein travel rapidly when moving along axons but spend the majority of the time paused, and these structures have similar characteristics to those previously observed for neurofilaments. The motile particles containing tau or α-synuclein colocalise with the fast-transporting molecular motor kinesin-1 in neurons. Co-immunoprecipitation experiments demonstrate that tau and α-synuclein are each associated with complexes containing kinesin-1, whereas only α-synuclein appears to interact with dyneincontaining complexes. In vitro glutathione S-transferase-binding assays using rat brain homogenate or recombinant protein as bait reveals a direct interaction of kinesin-1 light chains 1 and 2 with tau, but not with α-synuclein. Our findings suggest that the axonal transport of tau occurs via a mechanism utilising fast transport motors, including the kinesin family of proteins, and that α-synuclein transport in neurons may involve both kinesin and dynein motor proteins.
Abstract.
Derkinderen P, Scales TME, Hanger DP, Leung K-Y, Byers HL, Ward MA, Lenz C, Price C, Bird IN, Perera T, et al (2005). Tyrosine 394 is phosphorylated in Alzheimer's paired helical filament tau and in fetal tau with c-Abl as the candidate tyrosine kinase.
J Neurosci,
25(28), 6584-6593.
Abstract:
Tyrosine 394 is phosphorylated in Alzheimer's paired helical filament tau and in fetal tau with c-Abl as the candidate tyrosine kinase.
Tau is a major microtubule-associated protein of axons and is also the principal component of the paired helical filaments (PHFs) that comprise the neurofibrillary tangles found in Alzheimer's disease and other tauopathies. Besides phosphorylation of tau on serine and threonine residues in both normal tau and tau from neurofibrillary tangles, Tyr-18 was reported to be a site of phosphorylation by the Src-family kinase Fyn. We examined whether tyrosine residues other than Tyr-18 are phosphorylated in tau and whether other tyrosine kinases might phosphorylate tau. Using mass spectrometry, we positively identified phosphorylated Tyr-394 in PHF-tau from an Alzheimer brain and in human fetal brain tau. When wild-type human tau was transfected into fibroblasts or neuroblastoma cells, treatment with pervanadate caused tau to become phosphorylated on tyrosine by endogenous kinases. By replacing each of the five tyrosines in tau with phenylalanine, we identified Tyr-394 as the major site of tyrosine phosphorylation in tau. Tyrosine phosphorylation of tau was inhibited by PP2 (4-amino-5-(4-chlorophenyl-7-(t-butyl)pyrazolo[3,4-d]pyrimidine), which is known to inhibit Src-family kinases and c-Abl. Cotransfection of tau and kinases showed that Tyr-18 was the major site for Fyn phosphorylation, but Tyr-394 was the main residue for Abl. In vitro, Abl phosphorylated tau directly. Abl could be coprecipitated with tau and was present in pretangle neurons in brain sections from Alzheimer cases. These results show that phosphorylation of tau on Tyr-394 is a physiological event that is potentially part of a signal relay and suggest that Abl could have a pathogenic role in Alzheimer's disease.
Abstract.
Author URL.
Noble W, Olm V, Takata K, Casey E, Mary O, Meyerson J, Gaynor K, LaFrancois J, Wang L, Kondo T, et al (2003). Cdk5 is a key factor in tau aggregation and tangle formation in vivo.
Neuron,
38(4), 555-565.
Abstract:
Cdk5 is a key factor in tau aggregation and tangle formation in vivo.
Tau aggregation is a common feature of neurodegenerative diseases such as Alzheimer's disease, and hyperphosphorylation of tau has been implicated as a fundamental pathogenic mechanism in this process. To examine the impact of cdk5 in tau aggregation and tangle formation, we crossed transgenic mice overexpressing the cdk5 activator p25, with transgenic mice overexpressing mutant (P301L) human tau. Tau was hyperphosphorylated at several sites in the double transgenics, and there was a highly significant accumulation of aggregated tau in brainstem and cortex. This was accompanied by increased numbers of silver-stained neurofibrillary tangles (NFTs). Insoluble tau was also associated with active GSK. Thus, cdk5 can initiate a major impact on tau pathology progression that probably involves several kinases. Kinase inhibitors may thus be beneficial therapeutically.
Abstract.
Author URL.
Burns MP, Noble WJ, Olm V, Gaynor K, Casey E, LaFrancois J, Wang L, Duff K (2003). Co-localization of cholesterol, apolipoprotein E and fibrillar Aβ in amyloid plaques.
Molecular Brain Research,
110(1), 119-125.
Abstract:
Co-localization of cholesterol, apolipoprotein E and fibrillar Aβ in amyloid plaques
Recent evidence strongly suggests a role for cholesterol and apolipoprotein E in the etiology of Alzheimer's disease. We have demonstrated the co-localization of cholesterol and apolipoprotein E with β-amyloid immunoreactivity and thioflavin S immunofluorescence in AD type plaques of a transgenic mouse model. Cholesterol and apolipoprotein E co-localized to the core of thioflavin S-positive (fibrillar) plaques, but not thioflavin S-negative (diffuse) plaques from an early age. By 18 months of age, there was extensive coverage of fibrillar plaques immunopositive for apolipoprotein E and cholesterol oxidase. These findings support evidence that cholesterol and apolipoprotein E are involved in fibrillar plaque formation or maintenance, and suggest that cholesterol may impact amyloid formation extracellularly, as well as through an intracellular effect. © 2002 Elsevier Science B.V. All rights reserved.
Abstract.
Burns M, Gaynor K, Olm V, Mercken M, LaFrancois J, Wang L, Mathews PM, Noble W, Matsuoka Y, Duff K, et al (2003). Presenilin redistribution associated with aberrant cholesterol transport enhances beta-amyloid production in vivo.
J Neurosci,
23(13), 5645-5649.
Abstract:
Presenilin redistribution associated with aberrant cholesterol transport enhances beta-amyloid production in vivo.
Epidemiology, in vitro, and in vivo studies strongly implicate a role for cholesterol in the pathogenesis of Alzheimer's disease (AD). We have examined the impact of aberrant intracellular cholesterol transport on the processing of the amyloid precursor protein (APP) in a mouse model of Niemann-Pick type C (NPC) disease. In the NPC mouse brain, cholesterol accumulates in late endosomes/lysosomes. This was associated with the accumulation of beta-C-terminal fragments (CTFs) of APP, but the level of beta-secretase and its activity were not affected. Alpha-secretase activity and secreted APPalpha generation were also not affected, suggesting CTFs increased because of decreased clearance. The level of presenilin-1 (PS-1) was unchanged, but gamma-secretase activity was greatly enhanced, which correlated with an increase in Abeta40 and Abeta42 levels. These events were associated with abnormal distribution of PS-1 in the endosomal system. Our results show that aberrant cholesterol trafficking is associated with the potentiation of APP processing components in vivo, leading to an overall increase in Abeta levels.
Abstract.
Author URL.
Duff K, Noble W, Gaynor K, Matsuoka Y (2002). Organotypic slice cultures from transgenic mice as disease model systems.
J Mol Neurosci,
19(3), 317-320.
Abstract:
Organotypic slice cultures from transgenic mice as disease model systems.
Organotypic slice cultures have been prepared from the brains of transgenic mice with Alzheimer's disease-type pathology. Cell types within the slice undergo differentiation and slices can be maintained in culture for up to 6 mo when prepared from young neonates. Slices have been prepared from mice overexpressing genes of relevance to Alzheimer's disease, including mutant or wild-type tau. Neurons in these slices develop neurons that are immunoreactive for a number of markers of abnormal tau. Organotypic slice models are currently being used to test the impact of tangle enhancers or inhibitors as a prescreen for efficacy before testing drugs in vivo.
Abstract.
Author URL.
Nouri-Aria KT, O'Brien F, Noble W, Jabcobson MR, Rajakulasingam K, Durham SR (2000). Cytokine expression during allergen-induced late nasal responses: IL-4 and IL-5 mRNA is expressed early (at 6 h) predominantly by eosinophils.
Clin Exp Allergy,
30(12), 1709-1716.
Abstract:
Cytokine expression during allergen-induced late nasal responses: IL-4 and IL-5 mRNA is expressed early (at 6 h) predominantly by eosinophils.
The production of TH2-type cytokines [interleukin-4 (IL-4) and IL-5] and tissue eosinophilia are characteristic features of allergic diseases. It was previously reported that at 24 h after allergen provocation, CD3+ T-lymphocytes were the principal cell source of IL-4 and IL-5 mRNA transcripts in both atopic asthma and rhinitis. To investigate whether IL-4 and IL-5 mRNA are expressed earlier during late nasal responses and if so, which cell(s) are responsible. Nasal biopsies were obtained at 6 h after nasal allergen challenge and following a control challenge with the allergen diluent. Sections were immunostained for T-lymphocytes (CD3+, CD4+) and eosinophils (EG2+). In situ hybridization was used to detect the number of cells expressing messenger RNA (mRNA) for IL-4 and IL-5. In patients with allergic rhinitis, eosinophils (EG2+ cells P = 0. 006) but not T- cells (CD3+ cells) increased in the nasal mucosa at 6 h after allergen challenge. The number of cells expressing IL-4 mRNA (P = 0.01) and IL-5 mRNA (P = 0.05) also increased at 6 h. Co-localization studies showed that 76% of IL-4 mRNA+ cells and 77% of IL-5 mRNA+ cells were eosinophils, whereas at this time point, T-cells and mast cells accounted for
Abstract.
Author URL.
Durham SR, Walker SM, Varga EM, Jacobson MR, O'Brien F, Noble W, Till SJ, Hamid QA, Nouri-Aria KT (1999). Long-term clinical efficacy of grass-pollen immunotherapy.
N Engl J Med,
341(7), 468-475.
Abstract:
Long-term clinical efficacy of grass-pollen immunotherapy.
BACKGROUND: Pollen immunotherapy is effective in selected patients with IgE-mediated seasonal allergic rhinitis, although it is questionable whether there is long-term benefit after the discontinuation of treatment. METHODS: We conducted a randomized, double-blind, placebo-controlled trial of the discontinuation of immunotherapy for grass-pollen allergy in patients in whom three to four years of this treatment had previously been shown to be effective. During the three years of this trial, primary outcome measures were scores for seasonal symptoms and the use of rescue medication. Objective measures included the immediate conjunctival response and the immediate and late skin responses to allergen challenge. Cutaneous-biopsy specimens obtained 24 hours after intradermal allergen challenge were examined for T-cell infiltration and the presence of cytokine-producing T helper cells (TH2 cells) (as evidenced by the presence of interleukin-4 messenger RNA). A matched group of patients with hay fever who had not received immunotherapy was followed as a control for the natural course of the disease. RESULTS: Scores for seasonal symptoms and the use of rescue antiallergic medication, which included short courses of prednisolone, remained low after the discontinuation of immunotherapy, and there was no significant difference between patients who continued immunotherapy and those who discontinued it. Symptom scores in both treatment groups (median areas under the curve in 1995, 921 for continuation of immunotherapy and 504 for discontinuation of immunotherapy; P=0.60) were markedly lower than those in the group that had not received immunotherapy (median value in 1995, 2863). Although there was a tendency for immediate sensitivity to allergen to return late after discontinuation, there was a sustained reduction in the late skin response and associated CD3+ T-cell infiltration and interleukin-4 messenger RNA expression. CONCLUSIONS: Immunotherapy for grass-pollen allergy for three to four years induces prolonged clinical remission accompanied by a persistent alteration in immunologic reactivity.
Abstract.
Author URL.