Ganbold M, Barker J, Ma R, Jones L, Carew M (2010). Cytotoxicity and bioavailability studies on a decoction of Oldenlandia diffusa and its fractions separated by HPLC.
J Ethnopharmacol,
131(2), 396-403.
Abstract:
Cytotoxicity and bioavailability studies on a decoction of Oldenlandia diffusa and its fractions separated by HPLC.
AIM OF THE STUDY: Oldenlandia diffusa is a traditional Chinese herbal remedy with known cytotoxic activity in vitro and in vivo. The aim of the study was to identify the most cytotoxic constituents of a water extract (a decoction is traditionally used as a treatment) by HPLC and activity-guided fractionation. The bioavailability of the decoction and certain fractions, and the mode of cell death induced by these mixtures, were also investigated. MATERIALS AND METHODS: a decoction of O. diffusa was prepared and separated by HPLC into eleven fractions (F1-11) for testing on the growth of HL60 leukaemia cells; two of the most active fractions were also tested on Caco-2 colon cancer cells. Cell viability was measured by trypan blue exclusion, DNA content (Cyquant NF assay) and neutral red uptake. Evidence of apoptosis was gained from cells stained with the nuclear dye DAPI, and detection of cleaved poly (ADP-ribose) polymerase (PARP) by Western blot. RESULTS: Fraction 9 was found to be the most active fraction, and, along with the decoction, induced apoptosis. Cells stained with DAPI showed a decrease in cell size and nuclear fragmentation characteristic of apoptosis. Detection of cleaved PARP further confirmed induction of apoptosis by O. diffusa decoction and fraction 9. The bioavailability of O. diffusa was investigated by production of post-absorption samples using Caco-2 intestinal epithelial monolayers. Addition of post-absorption samples (taken from the basolateral side after 3h incubation with the decoction on the apical side) inhibited the growth of HL60 cells, and suggested a degree of bioavailability. The constituents in fraction 9 were further separated by HPLC and eight major compounds were identified by LC-MS: two of these were ursolic acid (UA) and its enantiomer oleanolic acid (OA). Concentrations of UA and OA in the decoction were then calculated by reference to the area of the peaks of UA and OA found in F9. The post-absorption sample of F9 contained six of the eight constituents in the original pre-absorption fraction 9. CONCLUSIONS: Taken together, the results suggest that certain constituents, possibly including ursolic/oleanolic acid, may be bioavailable and at sufficient concentration to induce apoptosis in cancer cells in vitro through a mechanism including the cleavage of PARP.
Abstract.
Author URL.
Yang X, Rudolf M, Carew MA, Yoshida M, Nerreter V, Riley AM, Chung SK, Bruzik KS, Potter BV, Schultz C, et al (1999). Inositol 1,3,4-trisphosphate acts in vivo as a specific regulator of cellular signaling by inositol 3,4,5,6-tetrakisphosphate.
J Biol Chem,
274(27), 18973-18980.
Abstract:
Inositol 1,3,4-trisphosphate acts in vivo as a specific regulator of cellular signaling by inositol 3,4,5,6-tetrakisphosphate.
Ca2+-activated Cl- channels are inhibited by inositol 3,4,5, 6-tetrakisphosphate (Ins(3,4,5,6)P4) (Xie, W. Kaetzel, M. A. Bruzik, K. S. Dedman, J. R. Shears, S. B. and Nelson, D. J. (1996) J. Biol. Chem. 271, 14092-14097), a novel second messenger that is formed after stimulus-dependent activation of phospholipase C (PLC). In this study, we show that inositol 1,3,4-trisphosphate (Ins(1,3,4)P3) is the specific signal that ties increased cellular levels of Ins(3,4,5,6)P4 to changes in PLC activity. We first demonstrated that Ins(1,3,4)P3 inhibited Ins(3,4,5,6)P4 1-kinase activity that was either (i) in lysates of AR4-2J pancreatoma cells or (ii) purified 22,500-fold (yield = 13%) from bovine aorta. Next, we incubated [3H]inositol-labeled AR4-2J cells with cell permeant and non-radiolabeled 2,5,6-tri-O-butyryl-myo-inositol 1,3, 4-trisphosphate-hexakis(acetoxymethyl) ester. This treatment increased cellular levels of Ins(1,3,4)P3 2.7-fold, while [3H]Ins(3, 4,5,6)P4 levels increased 2-fold; there were no changes to levels of other 3H-labeled inositol phosphates. This experiment provides the first direct evidence that levels of Ins(3,4,5,6)P4 are regulated by Ins(1,3,4)P3 in vivo, independently of Ins(1,3,4)P3 being metabolized to Ins(3,4,5,6)P4. In addition, we found that the Ins(1, 3,4)P3 metabolites, namely Ins(1,3)P2 and Ins(3,4)P2, were >100-fold weaker inhibitors of the 1-kinase compared with Ins(1,3,4)P3 itself (IC50 = 0.17 microM). This result shows that dephosphorylation of Ins(1,3,4)P3 in vivo is an efficient mechanism to "switch-off" the cellular regulation of Ins(3,4,5,6)P4 levels that comes from Ins(1,3, 4)P3-mediated inhibition of the 1-kinase. We also found that Ins(1,3, 6)P3 and Ins(1,4,6)P3 were poor inhibitors of the 1-kinase (IC50 = 17 and >30 microM, respectively). The non-physiological trisphosphates, D/L-Ins(1,2,4)P3, inhibited 1-kinase relatively potently (IC50 = 0.7 microM), thereby suggesting a new strategy for the rational design of therapeutically useful kinase inhibitors. Overall, our data provide new information to support the idea that Ins(1,3,4)P3 acts in an important signaling cascade.
Abstract.
Author URL.