Journal articles
Bamford RA, Leung SK, Jeffries AR, Franklin A, Commin G, Davies J, Dempster E, Hannon E, Mill J (2023). 59. ULTRA-DEEP LONG READ TRANSCRIPTOME SEQUENCING REVEALS DRAMATIC ISOFORM DIVERSITY ACROSS HUMAN CORTEX DEVELOPMENT: RELEVANCE FOR GENETIC STUDIES OF PSYCHIATRIC DISORDERS. European Neuropsychopharmacology, 75
Mill J, Hannon E, Dempster E, Franklin A, Burrage J, Davies J, Chioza B, Commin G, Jeffries AR, Bamford RA, et al (2023). W76. CELL-SPECIFIC METHYLOMIC VARIATION IN NEURODEVELOPMENT AND SCHIZOPHRENIA. European Neuropsychopharmacology, 75, s144-s145.
Davies J, Franklin A, Walker E, Owens N, Bray N, Bamford RA, Commin G, Chioza B, Burrage J, Dempster E, et al (2022). 1. DEVELOPMENTAL TRAJECTORIES OF DNA METHYLATION IN NEURAL CELL POPULATIONS IN HUMAN CORTEX AND LINKS TO NEURODEVELOPMENTAL DISORDERS. European Neuropsychopharmacology, 63
Steg LC, Shireby GL, Imm J, Davies JP, Franklin A, Flynn R, Namboori SC, Bhinge A, Jeffries AR, Burrage J, et al (2021). Novel epigenetic clock for fetal brain development predicts prenatal age for cellular stem cell models and derived neurons.
Mol Brain,
14(1).
Abstract:
Novel epigenetic clock for fetal brain development predicts prenatal age for cellular stem cell models and derived neurons.
Induced pluripotent stem cells (iPSCs) and their differentiated neurons (iPSC-neurons) are a widely used cellular model in the research of the central nervous system. However, it is unknown how well they capture age-associated processes, particularly given that pluripotent cells are only present during the earliest stages of mammalian development. Epigenetic clocks utilize coordinated age-associated changes in DNA methylation to make predictions that correlate strongly with chronological age. It has been shown that the induction of pluripotency rejuvenates predicted epigenetic age. As existing clocks are not optimized for the study of brain development, we developed the fetal brain clock (FBC), a bespoke epigenetic clock trained in human prenatal brain samples in order to investigate more precisely the epigenetic age of iPSCs and iPSC-neurons. The FBC was tested in two independent validation cohorts across a total of 194 samples, confirming that the FBC outperforms other established epigenetic clocks in fetal brain cohorts. We applied the FBC to DNA methylation data from iPSCs and embryonic stem cells and their derived neuronal precursor cells and neurons, finding that these cell types are epigenetically characterized as having an early fetal age. Furthermore, while differentiation from iPSCs to neurons significantly increases epigenetic age, iPSC-neurons are still predicted as being fetal. Together our findings reiterate the need to better understand the limitations of existing epigenetic clocks for answering biological research questions and highlight a limitation of iPSC-neurons as a cellular model of age-related diseases.
Abstract.
Author URL.
Howell L, Osborne E, Franklin A, Hébrard É (2021). Pattern Recognition of Chemical Waves: Finding the Activation Energy of the Autocatalytic Step in the Belousov-Zhabotinsky Reaction.
J Phys Chem B,
125(6), 1667-1673.
Abstract:
Pattern Recognition of Chemical Waves: Finding the Activation Energy of the Autocatalytic Step in the Belousov-Zhabotinsky Reaction.
The Belousov-Zhabotinsky (BZ) reaction is an example of a homogeneous, nonequilibrium reaction used commonly as a model for the study of biological structure and morphogenesis. We report the experimental effects of temperature on spontaneously nucleated trigger waves in a quasi-two-dimensional BZ reaction-diffusion system, conducted isothermally at temperatures between 9.9 and 43.3 °C. Novel application of filter-coupled circle finding and localized pattern analysis is shown to allow the highly accurate extraction of average radial wave velocity and nucleation period. Using this, it is possible to verify a strong Arrhenius dependence of average wave velocity with temperature, which is used to find the effective activation energy of the reaction in accordance with predictions elaborated from the widely used Oregonator model of the BZ reaction. On the basis of our experimental results and existing theoretical models, the value for activation energy of the important self-catalyzed step in the Oregonator model is determined to be 86.58 ± 4.86 kJ mol-1, within range of previous theoretical prediction.
Abstract.
Author URL.
Steg LC, Shireby GL, Imm J, Davies JP, Franklin A, Flynn R, Namboori SC, Bhinge A, Jeffries AR, Burrage J, et al (2020). Novel epigenetic clock for fetal brain development predicts prenatal age for cellular stem cell models and derived neurons.
Abstract:
Novel epigenetic clock for fetal brain development predicts prenatal age for cellular stem cell models and derived neurons
AbstractInduced pluripotent stem cells (iPSCs) and their differentiated neurons (iPSC-neurons) are a widely used cellular model in the research of the central nervous system. However, it is unknown how well they capture age-associated processes, particularly given that pluripotent cells are only present during the earliest stages of mammalian development. Epigenetic clocks utilize coordinated age-associated changes in DNA methylation to make predictions that correlate strongly with chronological age. It has been shown that the induction of pluripotency rejuvenates predicted epigenetic age. As existing clocks are not optimized for the study of brain development, we developed the fetal brain clock (FBC), a bespoke epigenetic clock trained in human prenatal brain samples in order to investigate more precisely the epigenetic age of iPSCs and iPSC-neurons. The FBC was tested in two independent validation cohorts across a total of 194 samples, confirming that the FBC outperforms other established epigenetic clocks in fetal brain cohorts. We applied the FBC to DNA methylation data from iPSCs and iPSC-derived neuronal precursor cells and neurons, finding that these cell types are epigenetically characterized as having an early fetal age. Furthermore, while differentiation from iPSCs to neurons significantly increases epigenetic age, iPSC-neurons are still predicted as being fetal. Together our findings reiterate the need to better understand the limitations of existing epigenetic clocks for answering biological research questions and highlight a limitation of iPSC-neurons as a cellular model of age-related diseases.
Abstract.