The University of Exeter Medical School delivers two highly-regarded and innovative undergraduate degrees: the BSc in Medical Sciences and the Bachelor of Medicine, Bachelor of Surgery (BMBS). Our research extends from cutting-edge fundamental life science to studies of disease mechanisms; from innovative health services research to world-renowned patient-centred interventions. As a student here you’ll benefit from the unparalleled insights that can be gained by spending time in such an exceptional research environment.

The combination of our scientific research and evidence-based approaches to learning and teaching will prepare you to become the scientists and doctors that will overcome current – and future – challenges in health and social care.

As a student of the Medical School, you’ll also benefit from our partnership with the National Health Service (NHS), the cutting-edge research of the Institute of Biomedical and Clinical Sciences in life and medical sciences and various translational health technologies (eg, cardiovascular, diabetes, neuroscience and ageing) and the research of other colleges across the University.

Athena SWAN
The Athena SWAN Charter recognises and celebrates good employment practice for women working in Science, Technology, Engineering and Mathematics (STEM) in higher education and research.

The University of Exeter Medical School have been awarded an Athena SWAN Bronze department award. Find out more about Athena SWAN in the University of Exeter Medical School at www.exeter.ac.uk/medicine/about/athenaswan

Your brain contains tens of billions of nerve cells communicating across an intricate web of connections. These complex circuits arise in the developing brain from neurons extending long, thin processes, called axons, which grow towards their targets guided by chemical signals in their environment. At the tip of the axon is a specialised structure called a growth cone which can read this chemical map using receptor proteins on its surface.

Growth cones contain an internal scaffold, called the cytoskeleton, which enables them to turn and sense their surroundings; it also provides the motor force to push them forward and power growth. A major barrier to understanding how the brain is wired up is deciphering how the growth cone steering is connected to the motor, that is, how the receptors turn external signals into changes in the cytoskeleton.

The brain’s connections must be constantly remodelled throughout life to respond to and remember everyday experiences. This ability deteriorates with age and is lost in various neurological disorders such as dementia; unfortunately there is no way to repair this damage. Our aim is to provide a better understanding of how the brain forms and apply this knowledge to developing new ways to treat congenital disorders or repair neurodegeneration. More details of our work can be found at www.axonology.com

Dr John Chilton, Senior Lecturer in Cell Biology
GCE AL/AS science includes: Biology/Human Biology*; Chemistry; Computing; Design and Technology; Electronics; Environmental Studies; Geography; Geology; Maths/Pure Maths/Further Maths*; Physical Education; Physics; Psychology; Science (applied); Statistics.

Students joining the three-year programme will have the option to transfer to the four-year programme, and vice versa.

International students
The University recognises a wide range of international qualifications as well as A levels and the International Baccalaureate. You can find further information about academic and English language entry requirements at www.exeter.ac.uk/ug/international.

Applying
For full and up-to-date information on applying to Exeter and entry requirements, including requirements for other types of qualification, please see www.exeter.ac.uk/ug/applications.

<table>
<thead>
<tr>
<th>UCAS CODE</th>
<th>TYPICAL OFFER</th>
<th>REQUIRED SUBJECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>B100 3 yrs (B101 4 yrs)</td>
<td>AAB-ABB; IB: 34-32</td>
<td>At least one grade A and one grade B in GCE AL science subjects, one of which must be Biology; at least one HL6 and one HL5 in IB science subjects, one of which must be Biology</td>
</tr>
<tr>
<td>B109 3 yrs (B119 4 yrs)</td>
<td>AAB-ABB; IB: 34-32</td>
<td></td>
</tr>
<tr>
<td>B106 3 yrs (B116 4 yrs)</td>
<td>AAB-ABB; IB: 34-32</td>
<td></td>
</tr>
<tr>
<td>B105 3 yrs (B115 4 yrs)</td>
<td>AAB-ABB; IB: 34-32</td>
<td></td>
</tr>
<tr>
<td>B108 3 yrs (B118 4 yrs)</td>
<td>AAB-ABB; IB: 34-32</td>
<td></td>
</tr>
<tr>
<td>B107 3 yrs (B117 4 yrs)</td>
<td>AAB-ABB; IB: 34-32</td>
<td></td>
</tr>
</tbody>
</table>

Transfer to Medicine
The Medical School allows up to ten per cent of Medical Sciences students to transfer to the first year of the BMBS programme after completion of their first year. This will be for students with AAB at A level or equivalent qualifications, who have achieved high average scores of 1st or 2:1 level. These students will be ranked on their performance in an MCQ exam based on a core module's content and invited to attend a competitive selection interview. No UKCAT scores will be required. Further conditions may apply. For more up-to-date details of the admission process via this route you are advised to contact the BMBS admissions team at medicine@exeter.ac.uk.

Biosciences
The Medical Sciences programmes are delivered in conjunction with Biosciences. You may also be interested in programmes within the Biosciences portfolio including BSc Biological Sciences, BSc Biochemistry and BSc Biological and Medicinal Chemistry; Study Abroad and professional placement variants of each of these programmes are offered. Full details of the programmes are available in the Biosciences subject brochure and online at www.exeter.ac.uk/ug/biosciences.

* If more than one of these is taken they would only count as one ‘science’ but could count as two A levels towards our general requirements
At present, many scientific discoveries often do not leave the laboratories in which they are made. At the same time, the needs of front-line clinicians – and their patients – often go unheard by those doing research. This career-focused degree trains you to fill these gaps, and thereby enhance the lives of patients.

Our Medical Sciences degree offers an innovative approach to learning that includes supportive small-group learning; lectures from world-leading experts; internationally renowned e-learning resources; hands-on sessions in research laboratories and clinical settings; inspirational clinician–scientist–patient seminars; and worldwide professional training placement opportunities. The curriculum combines contemporary medical science with the training required to undertake cutting-edge research.

Career opportunities and employability training run throughout the programme: after your second year, you could choose to take a Professional Training Year (PTY) and spend a year undertaking research at one of the world’s leading universities, find out what it’s really like to work in industry or work in the NHS research environment. This optional year will reinforce your CV and enhance your employability in today’s competitive job market.

The programme has been developed in consultation with industry employers, the NHS and academia and provides a firm foundation in the core biomedical and biomolecular sciences, alongside an insight into medical practice and the biotechnologies used to prevent, test and diagnose disorders and treat patients. You’ll develop an integrated, scientific knowledge that you can put into practice in a clinical setting and robust research skills, plus creative and inquisitive communication, leadership, critical appraisal and problem-solving skills. These key skills will prepare you to progress scientific discovery into clinical and medical practice, ultimately to improve human health and the quality of life.
PROGRAMME DETAILS

BSc (Hons) Medical Sciences

LOCATION: EXETER (ST LUKE’S AND STREATHAM CAMPUSES)

Our Medical Sciences degree prioritises the science that underpins medicine and clinical practice, preparing you to translate scientific discoveries and technological advances into improved healthcare. To achieve this, the first part of the programme gives you a wide-ranging insight into how the human body normally works. We study this through dynamic small-group sessions (in the Integrated Clinical Science and Expanding Horizons modules), lectures and hands-on laboratory practicals.

We then build upon this foundation to see how things can go wrong in the body due to disease and how normal function might be restored. We are keen that you develop a holistic understanding of human health. For example, whilst pharmaceutical intervention may be appropriate in some conditions, other conditions might be helped more by using technology or engineering, innovative changes to the health environment or improved communication and psychological approaches. You will be able to see this for yourself, thanks to the wide-range of placements and modules that run throughout the programme.

The longest of these research placements is the Professional Training Year in the third year, when many students take the option to spend a whole year working in industry or a university or NHS laboratory. Whether you chose to do the three or four-year programme, your final year will be spent specialising in the area that interests you most, tailoring your degree to match your specific career ambitions. You’ll also undertake a two-term long independent research project under the supervision of an academic.

Pathways – new for 2015 entry

For September 2015 entry we will introduce five new pathways providing you with the option to study a particular area in more depth. These pathways have been developed through discussions with the scientific community to make sure graduates have the skills and knowledge needed to work in the ever evolving workplace. These areas link with the research strengths of the Medical School, this means that you will learn about the most relevant and up-to-date thinking in these fields.

Genetics and Genomics

LOCATION: EXETER (ST LUKE’S AND STREATHAM CAMPUSES)

Genetics is the study of genes, their action and how they are passed on through generations. Powerful technologies in genomics allow us to sequence a person’s entire genetic code: the genome, giving insight into the mechanisms of normal and pathological states, as well as the identification, diagnosis and treatment of genetic disorders.

Neuroscience

LOCATION: EXETER (ST LUKE’S AND STREATHAM CAMPUSES)

The study of the Central (brain, the spinal cord) and the Peripheral Nervous Systems, and how they interact with the internal and external environments in normal and disease states. Study neurological and behavioural disorders and gain an insight into the latest research methodologies in these areas.

Pharmacology

LOCATION: EXETER (ST LUKE’S AND STREATHAM CAMPUSES)

Study how drugs are designed and how they work in the body. Become familiar with research and development in the new generation of ‘smart’ drugs and how they are being targeted for specific sub-sets of disorders.

Health Research: Clinical Trials Management

LOCATION: EXETER (ST LUKE’S AND STREATHAM CAMPUSES)

Consider the key principles that underpin the successful design and implementation of clinical trials. Study the process of designing and undertaking a clinical trial including: applying for funding; building a team; and the different techniques that could be used for successful results. Learn the complex network of activities from patient recruitment to monitoring and outcome, and the management of relevant organisations.

Environment and Public Health

LOCATION: EXETER (ST LUKE’S AND STREATHAM CAMPUSES) AND CORNWALL

Understand how health systems work to prevent or manage diseases, promote health and prolong life; how the natural and man-made environments affect our health; and how to influence local and national health policy for the benefit of individuals and communities. This pathway will be linked to our Centre for Environment and Human Health based in Cornwall.
Year 1 Modules

<table>
<thead>
<tr>
<th>Module Name</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expanding Horizons 1</td>
<td>C</td>
</tr>
<tr>
<td>Integrated Clinical Science 1</td>
<td>C</td>
</tr>
<tr>
<td>Biochemistry and Genetics</td>
<td>C</td>
</tr>
<tr>
<td>Fundamental Principles for Medical Scientists</td>
<td>C</td>
</tr>
<tr>
<td>Microbiology and Cells 1</td>
<td>C</td>
</tr>
</tbody>
</table>

Year 2 Modules

<table>
<thead>
<tr>
<th>Module Name</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expanding Horizons 2</td>
<td>C</td>
</tr>
<tr>
<td>Integrated Clinical Science 2</td>
<td>C</td>
</tr>
<tr>
<td>Principles of Good Clinical Practice and Research</td>
<td>C</td>
</tr>
<tr>
<td>Microbiology and Cells 2</td>
<td>C</td>
</tr>
<tr>
<td>Analytical Techniques in Biochemistry</td>
<td>O</td>
</tr>
<tr>
<td>Genomics and Introductory Bioinformatics</td>
<td>O</td>
</tr>
<tr>
<td>Molecular Biology of the Gene</td>
<td>O</td>
</tr>
<tr>
<td>Molecular Microbiology</td>
<td>O</td>
</tr>
</tbody>
</table>

Optional competitive entry Professional Training Year (PTY)

Final Year Modules

<table>
<thead>
<tr>
<th>Module Name</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expanding Horizons 4</td>
<td>C</td>
</tr>
<tr>
<td>Integrated Clinical Science 4</td>
<td>C</td>
</tr>
<tr>
<td>Bioinformatics</td>
<td>O</td>
</tr>
<tr>
<td>Cell Biology of Disease</td>
<td>O</td>
</tr>
<tr>
<td>Cellular Basis of Immunity</td>
<td>O</td>
</tr>
<tr>
<td>Energy Metabolism</td>
<td>O</td>
</tr>
<tr>
<td>Frontiers in Molecular Cell Biology</td>
<td>O</td>
</tr>
<tr>
<td>Horizons of Biochemical Research</td>
<td>O</td>
</tr>
<tr>
<td>Managing Clinical Trials: Putting Science into Practice</td>
<td>O</td>
</tr>
<tr>
<td>Medical Imaging – Principles and Applications</td>
<td>O</td>
</tr>
<tr>
<td>Microbial Effectors of Disease</td>
<td>O</td>
</tr>
<tr>
<td>Molecular Basis of Infection</td>
<td>O</td>
</tr>
<tr>
<td>Parasitology</td>
<td>O</td>
</tr>
<tr>
<td>Pharmacology and Medicinal Chemistry</td>
<td>O</td>
</tr>
</tbody>
</table>
In your first year you will explore the science that underpins the advancement of modern medical practice. The emphasis is on understanding the normal functioning of the human body, from enzymes through to whole biological systems. Without this core knowledge of how the body works, it would be impossible for us, as scientists, to devise the new diagnostic tests, drugs or treatments that will best benefit patients.

Alongside traditional lectures, tutorials and laboratory practicals, you will engage in small group work where you are given the freedom to explore a scientific topic under the expert guidance of one of our tutors (in the Integrated Clinical Science and Expanding Horizons modules). Further tutor-guided learning occurs within our Life Science Resource Centre, supported by state-of-the-art technology-enhanced learning resources (the Integrated Clinical Science modules).

Your core laboratory skills will be developed through laboratory-based practicals that run alongside and support your other sessions. Some sessions also involve a doctor, scientist and patient to explore key clinical cases from three different perspectives.

You will begin to compile your Personal Development and Professionalism Portfolio, in which you chart your progress from a new student to a professional individual ready for the world of employment. You'll do this by analysing your academic performance and the frequent feedback offered by the school to identify opportunities for personal and professional development to help you achieve your career goals. Support for your academic progress and career planning is provided by your personal tutor and through various workshops and training sessions.

Core modules:

Expanding Horizons 1

This module shows you how basic science can improve healthcare by introducing you to expert researchers and showing you what they do. The day-to-day life of a researcher will be demonstrated in scheduled visits to laboratories in both university and healthcare environments and in seminars detailing the research and biomedical science concepts of specific diseases from the viewpoint of doctor, patient and researcher. This early interaction with biomedical science researchers, healthcare professionals and their patients will reveal the high level of professionalism required to succeed in these careers. Additionally, you’ll reflect on your experiences and learn how to analyse and critically evaluate published data and communicate your findings to others.

Biochemistry and Genetics

Life is driven by biochemical reactions and controlled by genetic information. Biochemistry and genetics therefore underpin an understanding of biology and its social, healthcare and industrial applications in medicine and biotechnology. The biochemistry component of the module will provide the essentials for understanding all living processes. You will study protein structure, enzyme kinetics and basic metabolism; understanding how each of these processes function and shape the living cell. Core biochemical experience is highly relevant to applications in biotechnology and medical science.

In the genetic component of this module you will gain an understanding of how information is stored and inherited in living organisms. You will consider genetics from the perspectives of DNA structure, gene expression, genome replication, heredity, genes in populations, and evolution. Modern techniques in DNA sequencing and the exploration of gene diversity will be introduced, with examples from humans and other organisms.

Integrated Clinical Science 1

This module links the key scientific concepts you explore in other modules to clinical practice. Working in small groups, you will use illustrative clinical science scenarios to study the core principles of biomedical disciplines relating to human function (including biochemistry, physiology, pharmacology, neuroscience and immunology) and observe how these subjects interact and interrelate within normal human function. You’ll also have an opportunity to gain an understanding of some key medical technologies used to assess human health and function.

Microbiology and Cells 1

Microbes form the greatest diversity of life on earth and are of major medical, ecological and economic importance. Microbial, human and all other forms of life are cellular. Microbiology and cell biology therefore underpin an understanding of biology and its social, healthcare and industrial applications in medicine and biotechnology. In the cell biology component of this module you will take a trip around the fundamental unit of life – the cell. With particular emphasis on its dynamic nature you will learn how cells use membranes and proteins to organise themselves, and how they communicate both within and without their confines. This module considers the guiding principles that govern the formation of a multicellular organism such as cell division and tissue development. The microbiology component of this module provides an introduction to the microbial world. The core concepts are focused around five key themes which are: evolution, information flow, metabolic pathways, structure and function and the impact of micro-organisms. Micro-organisms, including bacteria, protists and fungi, will be used to highlight these concepts.

Fundamental Principles for Medical Scientists

Introduces the underlying concepts required for scientific investigation, including modern laboratory techniques, experimental design and presenting scientific data. Particular emphasis is given to learning the quantitative skills required for analysing experimental results. Team development training and small-group tutorial work are features of this module.
The second year focuses on the scientific basis of important diseases, beginning with some fundamental insights into the ways in which human biology goes awry in disease. This knowledge is then used to explore how cutting-edge scientific technologies can be exploited to advance disease diagnosis and treatment.

Within a variety of learning environments, including lectures, tutorials, workshops, laboratory practicals and small group learning, you will have opportunities to investigate and debate how disease develops and how healthcare can be improved. Key aspects of applied research are explored including clinical research methods and its design and setting within healthcare environments. Your understanding of these areas develops through a variety of hands-on learning opportunities which enhance your practical research skills and knowledge of contemporary medical research issues.

Optional modules. You can select two from the following:

- **Analytical Techniques in Biochemistry**
 - The distinctive features of this module are that you will learn about the state-of-the-art techniques that are used to look at the structure and properties of proteins and their complexes. You will have the opportunity to put your knowledge into practice during two 6 hour and one 3 hour session in the practical laboratory. You will gain hands-on experience in data handling and writing of scientific practical reports. This will be invaluable to you for carrying out a practical project in your final year and if you wish to continue with postgraduate studies such as a Masters or PhD. The module will also be a route to interdisciplinary studies since a general understanding of the chemistry involved in protein mechanism and the physical principles behind some methods of analysis will be acquired as part of this module.

- **Genomics and Introductory Biotechnology**
 - We focus on state-of-the-art technology for analysis of genomes and gene expression and critically discuss their use in biological research and biotechnology. Practical classes consolidate use of internet-based genomics tools and provide a platform to critically discuss case studies.

- **Molecular Biology of the Gene**
 - This module covers a range of topics including cellular structure, genome organisation and replication, and genome expression, including protein modification and targeting.

- **Molecular Microbiology**
 - Through this module you will develop your knowledge of microbiology at a molecular level. Focusing primarily on bacterial and fungal species, we will cover topics including: molecular strategies for microbial survival, growth and adaptation; the molecular basis of antimicrobial drug resistance; the molecular mechanisms by which pathogens cause disease; the impact of the human microbial flora on health and disease; current molecular methods for the study of micro-organisms in isolation, and within complex microbial communities.
Professional Training Year – optional

The Professional Training Year (PTY) provides you with an excellent opportunity to gain invaluable experience of working as part of a cutting-edge research team. This gives you the chance to discover what it is like to work in a real research laboratory and will enhance your career prospects. You may even get the opportunity to attend a national or international science conference to present your research data, or may get your name on a research paper.

Undertaking a PTY placement will enhance your professionalism, independence and confidence; increase your subject knowledge and research skills; improve your problem-solving, team-working, leadership, communication and project management skills; and prepare you for working in a professional work environment.

Entry to the PTY is competitive and based on criteria such as a sound academic record. Students who are not successful in securing a PTY placement or who would like to only study for three years, will continue directly from the second year into the final year of the programme.

During your placement year you remain our student and benefit from all academic and personal support services. You will be expected to keep records of the activities you undertake and the experiences you gain.

Final Year

In your final year you have opportunities to study and undertake research to help improve current medical knowledge and practice. In addition to the core modules, you can select from a range of optional specialist advanced modules, enabling you to tailor your degree to match your own specific interests and career ambitions.

You'll look at authentic and complex clinical case scenarios and, working as a team, you'll apply evidence-based scientific theory and explore emerging new health technologies to help improve patient health and advance fundamental understanding of pathologies. During this year, you will undertake a biomedical science/clinical research project, closely supervised by an expert research professional.

You'll also complete your Personal Development and Professionalism Portfolio. Support will be provided to help you consider your career options and help consolidate your CV and interview technique.

Core modules:

Expanding Horizons 4

In this module you’ll have an opportunity to undertake your own independent and original piece of clinical research under expert staff supervision. Research projects deal with questions and issues at the cutting-edge of medical developments. You’ll design the research project, collect and analyse data and then write up the results. In addition, the module will also enhance your future employability by consolidating your personal and professional skills.

Integrated Clinical Science 4

Continuing on from the first and second year modules, you’ll apply critical appraisal of technological advances, scientific discoveries and published research to contemporary healthcare problems, thereby illustrating how science translation advances current clinical practice. Major areas of translational science such as genetics, diabetes, immunology and neuroscience will be explored within extensive medical and clinical contexts.

Optional modules. You can select three from the following:

Cellular Basis of Immunity

This module introduces you to the science of immunology. Key components of the immune system are explored and current research topics are used to illustrate how antibodies are engineered and used in the diagnosis and prevention of diseases in contemporary medicine and agriculture.

Bioinformatics

Research in the biological sciences is increasingly dependent on large datasets such as those generated by DNA sequencing and microarrays. This is also true for diagnostics and medicine. Analysis of these datasets requires a range of skills and knowledge drawn from computer science, physical sciences and mathematics and statistics as well as biological sciences. Bioinformatics is the discipline that integrates algorithms and methods from these disciplines to model biological systems and infer patterns hidden in complex data.

Frontiers in Molecular Cell Biology

Selected topics at the forefront of cell biology are explored in this module and you will be introduced to the range of experimental techniques that are used to investigate how cells function. In addition, you’ll gain understanding of the medical relevance of some cellular processes such as mitosis, motors in membrane trafficking, function and morphogenesis of cilia and bacterial environmental sensing and chemotaxis.

Managing Clinical Trials: Putting Science into Practice

This module explores the key scientific principles underpinning the successful design, implementation and monitoring strategies associated with a new clinical technology trial. You will gain a thorough understanding of the key principles that influence new clinical trial design; including but not limited to the role of diagnostic biomarkers, the development of complex interventions and the role of health prevention.
Learning how to measure blood pressure, cultivating and observing bacteria or even dissecting a brain are just a few examples of the interesting things encountered so far as a first year Medical Sciences student. This unique course is perfectly organised, allowing you to combine the knowledge acquired from each module in order to get a better understanding of clinical research and medical practice. Personal tutors and facilitators are approachable and they do their best to help you achieve your goals. Everyone is part of a big team; you are not considered a student, but a colleague. Working in small groups is a big advantage as you have the chance to improve your teamwork, leadership and communication skills. This is proof that this course invests in both academic performance and personal skills development, training you step by step to ultimately be able to improve human health. After seven months of being part of this ‘team’, I understood that all you require to bring along is your enthusiasm; everything else is provided by the University!
Based at the University of Exeter’s Truro Campus in Cornwall, the European Centre for Environment and Human Health conducts world-class research into the complex connections between the environment and health.

The Centre’s academics employ a wide range of research methods that include epidemiology, policy analysis, systematic reviews, health economics, chemistry and microbiology. They are using science, the arts and the humanities to improve our understanding of the health risks – and opportunities – presented by the environment.

Collaborations with business, government and the third sector are at the heart of the Centre’s work, ensuring that its research is informed by local issues and real world challenges. Its outcomes are helping to enhance the economy of Cornwall and impact policy at a national and international level.

The Centre is part of the University of Exeter Medical School’s research programme and shares laboratories with the Environment and Sustainability Institute at the University’s Penryn Campus. It is funded with support from the European Regional Development Fund and European Social Fund Convergence Programme for Cornwall and the Isles of Scilly.
LEARNING AND TEACHING

Throughout the programme, you will benefit from a careful blend of innovative and traditional teaching methods employed by both the Medical School and the Biosciences department. A variety of stimulating, cutting-edge resources are also available to support your learning.

Structured small group learning sessions
In tutor-led groups of 8-10 you’ll investigate key scientific concepts and systems presented in the form of triggers. The style of trigger varies week by week but will include authentic patient-based clinical case studies, current media-worthy medical science breakthroughs and extracts from research papers. Within your group, you will discuss the trigger and report back your individual research findings, coming to a shared understanding of the medically relevant scientific knowledge important to fully understand the trigger. Throughout your degree you’ll have the opportunity to apply your increasing knowledge to new triggers and build on the depth and breadth of your understanding. These small group sessions, which follow the ethos of Problem Based Learning (PBL), will also develop your critical thinking, problem design and solving, teamwork, presentation and lifelong learning skills which are essential for your career development.

Life sciences activities
You’ll be supported in your exploration of the human biomedical science that is presented in your small group sessions by the rich variety of state-of-the-art resources available in the Life Sciences Resource Centre. These resources include anatomical teaching models, multimedia and IT resources, and a well-stocked library. Tutor-led activities will drive your engagement with selected resources in order to increase your understanding of the small group triggers.

Clinical skills sessions
You’ll work with the specialist equipment available in this facility to consolidate your understanding of human physiology and train you in key practical clinical research techniques and patient communication skills. You’ll have access to state-of-the-art simulated patient mannequins and other equipment which you would find in a clinical environment.

Lectures and seminars
Large group lectures and cutting-edge research seminars delivered by academics as well as external speakers will complement your studies. Lectures may contain students from a variety of different programmes for which the lecture content is relevant.

Practical laboratory sessions
You’ll develop your laboratory skills in the Biosciences teaching laboratory on the Streatham Campus, which is equipped with the best available instruments for observational, experimental and numerical aspects of biosciences including a range of biochemical, molecular, physiological and electronic apparatus. Computer-based practical sessions are held in the IT suite at the St Luke’s Campus. Helpful and friendly technicians and demonstrators are always available during practical sessions to ensure that you get the most out of your training sessions.

Online learning
Your learning will be supported by the University’s virtual learning environment. You will have individual access to electronic journals, content-rich study guides, and interactive online learning materials covering various science disciplines, formative online assessments and group discussion forums.

Assessment
Regular assessment is used to help provide you with frequent feedback, enabling you to identify your strengths, as well as areas for improvement. Feedback is provided in a number of different ways including online written feedback and self, peer, tutor or small group feedback.

Assessment in the early stages of the degree tends to be more knowledge-based to ensure a strong and broad grounding in the subject area, with some opportunities for essay writing and critical analysis. Assessment in the later degree stages tends to assess your critical appraisal skills, depth of understanding and your ability to think independently. Some assessments take place in groups, focusing on the team product or how well you lead your team to complete a task. A variety of assessment methods are employed across the programme, each aligned to the intended learning outcomes of the modules. Assessment formats include multiple-choice tests, essays, structured practical exams, reflective essays, oral and poster presentations, scientific report writing, short-answer question tests and independent project work.

I’m Director of the European Centre for Environment and Human Health and, as both a medical doctor and public health researcher, I have over 25 years of experience in environment and health issues. We look at how environmental factors – such as climate change – are likely to affect health and wellbeing. As part of this work, I’m considering how we can impact the ‘health’ of the oceans and how these changes might lead to increased risks, such as those from harmful algal blooms.

Working closely with organisations such as the Met Office and Public Health England, I’m exploring new ways to analyse large sets of data. I hope that, by combining different sources of information, we can shed new light on the relationships between our surroundings and our health – ultimately helping to improve public health and the environment in the UK and beyond.

Professor Lora Fleming, Director of the European Centre for Environment and Human Health
SUPPORT FOR YOUR LEARNING

Academic support
All students are assigned a personal tutor by the Medical School for the three or four years of the programme. Your personal tutor is responsible for monitoring and supporting your academic progress and offers support and guidance in remediation, module choice advice and career development via the Personal Development Planning programme. Your personal tutor will also support you through career and employability workshops and training events.

In addition, you’ll be assigned a programme adviser from Biosciences who will provide you with extra academic support for Biosciences modules.

At the Medical School, students are regarded as partners in curriculum development and delivery; improving student experience is one of our top priorities. You will, therefore, benefit from student representation in the Student-Staff Liaison Committee. This organisation enables student opinions and interests to be recognised, and provide an effective channel for formal communications between students and academic, clinical and administrative staff.

Wellbeing
We offer a friendly and supportive environment from your first day with us. Our pastoral tutor team can provide assistance with non-academic issues.

The University also provides extensive wellbeing support through a range of services including counselling services, advice units, chaplaincy, childcare facilities and student health centres. Further information can be found at www.exeter.ac.uk/ug/wellbeing

CAREERS

This programme is designed to prepare you for employment in a wide variety of professional careers and helps to develop the key transferable skills valued by employers. These skills range from identifying and solving problems, to efficient communication, leadership and management. Key vocational skills, such as advanced laboratory training within molecular biology, also enhances your employability. Additionally, those students undertaking a Professional Training Year have an additional and invaluable insight into the professional workplace, having also potentially gained an employer reference for their CV.

Science graduates compete well in the wider graduate employment market, as they offer strong analytical and problem-solving skills valued highly across all sectors.

Future career pathways include:

- Postgraduate study (MSc or PhD), either at a university or with the NHS.
- Employment in knowledge industries, such as pharmaceuticals or medical technology. Roles might include research and development, clinical trials, or sales and marketing.
- Training and employment to become a Scientific Officer in the Civil Service.
- NHS management.
- Postgraduate training for the NHS Scientist Training Programme (STP).
- Graduate entry to professional degrees such as radiotherapy.
- Graduate entry to medicine*, dentistry or other accredited healthcare programmes.

* final year students on track to get a 2:1 or First may apply to join the medical programme at Exeter and will be guaranteed an interview; we will waive the normal requirement for applicants not coming directly from school to take the GAMSAT
We are in the top 1% of universities in the world

We rank 8th in *The Times and The Sunday Times University Guide 2014* and 10th in *The Complete University Guide 2014*

We have ranked in the top 10 of the National Student Survey every year since it launched

Our teaching is inspired by our research, nearly 90% of which was ranked as internationally recognised in the 2008 Research Assessment Exercise

84% of our students graduate with either a First or 2:1 degree

VISIT US TO FIND OUT MORE

Open Days
Tuesday 10 June 2014
Saturday 6 September 2014

Campus Tours
We run campus tours at the Streatham Campus each weekday and at St Luke’s Campus on Tuesdays and Fridays, during term time. You’ll be shown round by a current student, who’ll give you a first-hand account of what it’s like to live and study at the University of Exeter.

For full details and to book your place, contact us on:
www.exeter.ac.uk/opendays
Phone: +44 (0)1392 724043
Email: visitus@exeter.ac.uk

Offer-Holder Visit Days
Our Offer-Holder Visit Days give you the chance to find out more about your programme and decide whether to accept our offer. This visit includes a campus tour, an introduction to the department and a more informal period for questions and answers. A number of our current students lead tours and answer your questions about what it is like to study at the University of Exeter. Offer-Holder Visit Days take place during the period January to April.

www.exeter.ac.uk/ug/medical-sciences