Dr Ge Guo
Senior Research Fellow
Clinical and Biomedical Sciences
University of Exeter
Living Systems Institute
Stocker Road
Exeter EX4 4QD
About me:
My research is focussed on mammalian pluripotent stem cells and cell fate transition during early embryo development. Key research areas in the lab include:
- Understanding the developmental plasticity of human naïve stem cells.
- Modeling early human embryo development ex vivo by reconstruction of embryo structures.
- Establishing pluripotent stem cells from various mammalian species and elucidation of shared and distinct gene regulatory features (collaborative with Professor Austin Smith)
Recently we succeeded in generating human blastoids that closely resemble the natural human embryo opening up exciting new research possibilities.
Yanagida et al., Naive stem cell blastocyst model captures human embryo lineage segregation Cell Stem Cell, 2021 (https://pubmed.ncbi.nlm.nih.gov/33957081/)
We are looking for motivated postdocs and PhD students to study human naive pluripotent stem cells and stem cell derived human embryo models.
Current job opening: postdoctoral research fellow/ associate (https://jobs.exeter.ac.uk , Job Reference R73730)
Interests:
My main research is centred on human naïve pluripotency and cell fate transition. During my post-doc research I have developed methods to establish human naïve pluripotent stem cells from embryos, conventional human stem cells and from somatic cells. Importantly, the human naïve pluripotent stem cells we generated are closely related to resident cells in the early human embryo and are genetically stable. My current research shows that unlike mouse embryonic stem cells, human naïve stem cells have the unique potential to differentiate into all cell types in an embryo including the extra-embryonic lineages. My research group will continue the study on human naïve pluripotency to understand the developmental plasticity and the underlying regulatory mechanisms. Furthermore, by harnessing the unique extraembryonic differentiation potential we aim to establish a synthetic human blastocyst model. This will enable application of the latest molecular, genetic and biophysical approaches to gain knowledge and understanding of human-specific features of early embryo development.
Key publications
Guo G*., Stirparo, G.G., Strawbridge, S., Spindlow, D., Yang, J., Clarke, J., Dattani, A., Yanagida, A., Li, M.A., Myers, S., et al. (2021). Human Naïve Epiblast Cells Possess Unrestricted Lineage Potential. Cell Stem Cell, 2020.2002.2004.933812.
Stirparo J.,Smith A. Guo G. Cancer-Related Mutations Are Not Enriched in Naive Human Pluripotent Stem Cells. Cell Stem Cell, 28:164-169.e2, (2021)
Bredenkamp, N., Yang, J., Clarke, J., Stirparo, G.G., von Meyenn, F., Dietmann, S., Baker, D., Drummond, R., Ren, Y., Li, D., Wu, C., Rostovskaya, M., Eminli-Meissner, S., Smith, A., Guo, G., 2019. Wnt inhibition facilitates rna-mediated reprogramming of human somatic cells to naive pluripotency. Stem Cell Reports.
Bredenkamp N, Stirparo G.G., Nichols J, Smith A, and Guo G. The cell-surface marker sushi containing domain 2 facilitates establishment of human naive pluripotent stem cells. Stem Cell Reports 12, 1212-1222 (2019).
Stirparo GG, Boroviak T, Guo G, Nichols J, Smith A, Bertone P. Integrated analysis of single-cell embryo data yields a unified transcriptome signature for the human pre-implantation epiblast. Development 145(3):07 Feb 2018
Guo G*, Meyenn F, Rostovskaya M, Clarke J, Dietmann S, Baker D, Sahakyan A, Myers S, Bertone P, Reik W, Plath K, Austin Smith. Epigenetic resetting of human pluripotency. Development. 144: 2748-2763. (2017). *Co-corresponding
Guo G, Meyenn F, Santos F, Chen Y, Reik W, Bertone P, Smith A and Nichols J. Naïve pluripotent stem cells derived directly from isolated cells of the human inner cell mass. Stem Cell Reports 6: 437-46 (2016).
Takashima Y, Guo G, Loos R, Nichols J, Ficz G, Krueger F, Oxley D, Santos F, Clarke J, Mansfield W, Reik W, Bertone P, Smith A. Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 158: 1254-69 (2014).