Publications by year
In Press
Wakeling M, Owens NDL, Hopkinson JR, Johnson MB, Houghton JAL, Dastamani A, Flaxman CS, Wyatt RC, Hewat TI, Hopkins JJ, et al (In Press). A novel disease mechanism leading to the expression of a disallowed gene in the pancreatic beta-cell identified by non-coding, regulatory mutations controlling HK1.
Nature GeneticsAbstract:
A novel disease mechanism leading to the expression of a disallowed gene in the pancreatic beta-cell identified by non-coding, regulatory mutations controlling HK1
Gene expression is tightly regulated with many genes exhibiting cell-specific silencing when their protein product would disrupt normal cellular function. This silencing is largely controlled by non-coding elements and their disruption might cause human disease. We performed gene-agnostic screening of the non-coding regions to discover new molecular causes of congenital hyperinsulinism. This identified 14 non-coding de novo mutations affecting a 42bp conserved region encompassed by a regulatory. element in intron 2 of Hexokinase 1 (HK1), a pancreatic beta-cell ‘disallowed’ gene. We demonstrated that these mutations resulted in expression of HK1 in the pancreatic beta-cells causing inappropriate insulin secretion and congenital hyperinsulinism. These mutations identify a regulatory region critical for cell-specific silencing. Importantly, this has revealed a new disease mechanism for non-coding mutations that cause inappropriate expression of a disallowed gene.
Abstract.
Hopkins J, Childs A, Houghton J, Hewat T, Atapattu N, Johnson M, Patel K, Laver T, Flanagan S (In Press). Hyperinsulinaemic hypoglycaemia diagnosed in childhood can be monogenic.
The Journal of Clinical Endocrinology & MetabolismAbstract:
Hyperinsulinaemic hypoglycaemia diagnosed in childhood can be monogenic
Background
Congenital hyperinsulinism (HI) is characterised by inappropriate insulin secretion despite low blood glucose. Persistent HI is often monogenic, with the majority of cases diagnosed in infancy. Less is known about the contribution of monogenic forms of disease in those presenting in childhood. We investigated the likelihood of finding a genetic cause in childhood-onset HI and explored potential factors leading to the later age at presentation of disease.
Methods
We screened known disease-causing genes in 1848 individuals with HI, referred for genetic testing as part of routine clinical care. Individuals were classified as infancy-onset (when diagnosed with HI
Abstract.
Cannon S, Hall T, Hawkes G, Colclough K, Boggan RM, Wright CF, Pickett SJ, Hattersley AT, Weedon MN, Patel KA, et al (In Press). Large-scale blood mitochondrial genome-wide study provides novel insights into mitochondrial disease-related traits.
Abstract:
Large-scale blood mitochondrial genome-wide study provides novel insights into mitochondrial disease-related traits
AbstractBackground/ObjectivesWhole genome sequencing (WGS) from large cohorts enables the study of mitochondrial DNA (mtDNA) variation on human health. We aimed to investigate the influence of common, rare, and pathogenic mtDNA variants on 15 mitochondrial disease-related phenotypes.MethodsUsing WGS from 179,862 individuals from in the UK Biobank, we identified mtDNA variants using MitoHPC. We performed extensive association analyses with 15 mitochondrial disease-relevant phenotypes. We compared the results for the m.3243A>G variant with those from a clinically referred patient cohort.ResultsOf 15,881 mtDNA variants, 12 homoplasmic and one heteroplasmic variant had genome-wide significant associations. All homoplasmic variants increased aspartate aminotransferase level and three were novel, low frequency, variants (MAF∼0.002 and beta∼0.3 SD). Only m.3243A>G (MAF=0.0002) associated with diabetes (OR=5.6, 95%CI [3.2-9.9]), deafness (OR=12.3, 95%CI [6.2-24.4]) and heart failure (OR=39.5, 95%CI [9.76-160.1]). Multi-system disease risk and penetrance of all three traits increased with m.3243A>G level. Diabetes risk was further influenced by common nuclear genome variation. The penetrance of diabetes with m.3243A>G in the UK Biobank was lower than clinically referred patients, partly attributed to lower heteroplasmy. of 73 pathogenic mitochondrial disease variants, most were rare in the population with low penetrance.ConclusionOur study highlights the utility of WGS for investigating mitochondrial genetics within a large, unselected population. We identified novel associations and demonstrated that pathogenic mitochondrial variants have lower penetrance in clinically unselected than clinically referred settings. m.3243A>G associated with mitochondrial-related phenotypes at higher heteroplasmy. Our findings suggest potential benefits of reporting incidentally identified m.3243A>G at high heteroplasmy levels.
Abstract.
Semple RK, Pate KA, Auh S, Brown RJ (In Press). Systematic review of genotype-stratified treatment for monogenic insulin resistance.
Abstract:
Systematic review of genotype-stratified treatment for monogenic insulin resistance
AbstractObjectiveTo assess the effects of pharmacologic and/or surgical interventions in monogenic insulin resistance (IR), stratified by genetic aetiology.DesignSystematic review.Data sourcesPubMed, MEDLINE and Embase, from 1 January 1987 to 23 June 2021.Review methodsStudies reporting individual-level effects of pharmacologic and/or surgical interventions in monogenic IR were eligible. Individual subject data were extracted and duplicate data removed. Outcomes were analyzed for each affected gene and intervention, and in aggregate for partial, generalised and all lipodystrophy.Results10 non-randomised experimental studies, 8 case series, and 21 single case reports met inclusion criteria, all rated as having moderate or serious risk of bias. Metreleptin was associated with lower triglycerides and hemoglobin A1c in aggregated lipodystrophy (n=111), in partial lipodystrophy (n=71) and generalised lipodystrophy (n=41)), and inLMNA,PPARG,AGPAT2orBSCL2subgroups (n=72,13,21 and 21 respectively). Body Mass Index (BMI) was lower after treatment in partial and generalised lipodystrophy overall, and inLMNA or BSCL2, but notPPARGorAGPAT2subgroups. Thiazolidinedione use was associated with improved hemoglobin A1c and triglycerides in aggregated lipodystrophy (n=13), improved hemoglobin A1c only in thePPARGsubgroup (n=5), and improved triglycerides only in theLMNAsubgroup (n=7). InINSR-related IR, use of rhIGF-1, alone or with IGFBP3, was associated with improved hemoglobin A1c (n=15). The small size or absence of all other genotype-treatment combinations precluded firm conclusions.ConclusionsThe evidence guiding genotype-specific treatment of monogenic IR is of low to very low quality. Metreleptin and Thiazolidinediones appear to have beneficial metabolic effects in lipodystrophy, and rhIGF-1 appears to lower hemoglobin A1c in INSR-related IR. For other interventions there is insufficient evidence to assess efficacy and risks either in aggregated lipodystrophy or in genetic subgroups. There is a pressing need to improve the evidence base for management of monogenic IR.
Abstract.
2023
Bakinowska L, Vartak T, Phuthego T, Taylor M, Chandler K, Jerram ST, Williams S, Feldmann M, Johnson DG, Patel KA, et al (2023). Exocrine Proteins Including Trypsin(ogen) as a Key Biomarker in Type 1 Diabetes.
Diabetes Care,
46(4), 714-721.
Abstract:
Exocrine Proteins Including Trypsin(ogen) as a Key Biomarker in Type 1 Diabetes
. OBJECTIVE
. Proteomic profiling can identify useful biomarkers. Monozygotic (MZ) twins discordant for a condition represent an ideal test population. We aimed to investigate and validate proteomic profiling in twins with type 1 diabetes and in other well-characterized cohorts.
.
.
. RESEARCH DESIGN AND METHODS
. A broad, multiplex analysis of 4,068 proteins in serum samples from MZ twins concordant (n = 43) and discordant (n = 27) for type 1 diabetes identified major differences that were subsequently validated by a trypsin(ogen) assay in MZ pairs concordant (n = 39) and discordant (n = 42) for type 1 diabetes, individuals at risk for (n = 195) and with (n = 990) type 1 diabetes, as well as individuals with non–insulin-requiring adult-onset diabetes diagnosed as either autoimmune (n = 96) or type 2 (n = 291).
.
.
. RESULTS
. Proteomic analysis identified major differences between exocrine enzyme levels in discordant MZ twin pairs despite a strong correlation between twins, whether concordant or discordant for type 1 diabetes (P < 0.01 for both). In validation experiments, trypsin(ogen) levels were lower in twins with diabetes than in the co-twin without diabetes (P < 0.0001) and healthy control participants (P < 0.0001). In recently diagnosed participants, trypsin(ogen) levels were lower than in control participants across a broad age range. In at-risk relatives, levels <15 ng/mL were associated with an increased risk of progression (uncorrected P = 0.009). Multiple linear regression in recently diagnosed participants showed that trypsin(ogen) levels were associated with insulin dose and diabetic ketoacidosis, while age and BMI were confounders.
.
.
. CONCLUSIONS
. Type 1 diabetes is associated with altered exocrine function, even before onset. Twin data suggest roles for genetic and nongenetically determined factors. Exocrine/endocrine interactions are important underinvestigated factors in type 1 diabetes.
.
Abstract.
Şıklar Z, Kontbay T, Colclough K, Patel KA, Berberoğlu M (2023). Expanding the Phenotype of TRMT10A Mutations: Case Report and a Review of the Existing Cases.
J Clin Res Pediatr Endocrinol,
15(1), 90-96.
Abstract:
Expanding the Phenotype of TRMT10A Mutations: Case Report and a Review of the Existing Cases.
The tRNA methyltransferase 10 homologue a (TRMT10A) gene encodes tRNA methyl transferase, and biallelic loss of function mutations cause a recessive syndrome of intellectual disability, microcephaly, short stature and diabetes. A case with intellectual disability and distinctive features including microcephaly was admitted. She was diagnosed with epilepsy at 2.5 years old. At 3.6 years of age, severe short stature related to growth hormone (GH) deficiency was detected. She had an incidental diagnosis of diabetes at age 11.4 years which was negative for diabetes antibodies with persistent C-peptide level and she was treated with metformin. Spontaneous puberty did not begin until 15.7 years of age and she was found to have primary ovarian failure. A homozygous p.Arg127. mutation in TRMT10A was detected. In addition to the typical clinical features which characterize TRMT10A syndrome, we observed an unusual form of impaired glucose metabolism which presented in early childhood with hypoglycemia followed by diabetes in late childhood. GH deficiency and primary ovarian failure may also be additional findings of this syndrome. Patients with slow onset diabetes who are negative for auto-antibodies and have extra-pancreatic features should be tested for all known subtypes of monogenic diabetes.
Abstract.
Author URL.
Wyatt RC, Olek S, De Franco E, Samans B, Patel K, Houghton J, Walter S, Schulze J, Bacchetta R, Hattersley AT, et al (2023). FOXP3 TSDR Measurement Could Assist Variant Classification and Diagnosis of IPEX Syndrome.
J Clin Immunol,
43(3), 662-669.
Abstract:
FOXP3 TSDR Measurement Could Assist Variant Classification and Diagnosis of IPEX Syndrome.
Pathogenic FOXP3 variants cause immune dysregulation polyendocrinopathy enteropathy X-linked (IPEX) syndrome, a progressive autoimmune disease resulting from disruption of the regulatory T cell (Treg) compartment. Assigning pathogenicity to novel variants in FOXP3 is challenging due to the heterogeneous phenotype and variable immunological abnormalities. The number of cells with demethylation at the Treg cell-specific demethylated region (TSDR) is an independent biomarker of IPEX. We aimed to investigate if diagnosing IPEX at presentation with isolated diabetes could allow for effective monitoring of disease progression and assess whether TSDR analysis can aid FOXP3 variant classification and predict disease course. We describe a large genetically diagnosed IPEX cohort (n = 65) and 13 individuals with other monogenic autoimmunity subtypes in whom we quantified the proportion of cells with FOXP3 TSDR demethylation, normalized to the number with CD4 demethylation (%TSDR/CD4) and compare them to 29 unaffected controls. IPEX patients presenting with isolated diabetes (50/65, 77%) often later developed enteropathy (20/50, 40%) with a median interval of 23.5 weeks. %TSDR/CD4 was a good discriminator of IPEX vs. unaffected controls (ROC-AUC 0.81, median 13.6% vs. 8.5%, p
Abstract.
Author URL.
Bowman P, Patel KA, McDonald TJ, Holst JJ, Hartmann B, Leveridge M, Shields BM, Hammersley S, Spaull SR, Knight BA, et al (2023). Incretin hormone responses to carbohydrate and protein/fat are preserved in adults with sulfonylurea-treated KCNJ11 neonatal diabetes.
J Diabetes InvestigAbstract:
Incretin hormone responses to carbohydrate and protein/fat are preserved in adults with sulfonylurea-treated KCNJ11 neonatal diabetes.
The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), are thought to be the main drivers of insulin secretion in individuals with sulfonylurea (SU)-treated KCNJ11 permanent neonatal diabetes. The aim of this study was to assess for the first time the incretin hormone response to carbohydrate and protein/fat in adults with sulfonylurea-treated KCNJ11 permanent neonatal diabetes compared with that of controls without diabetes. Participants were given a breakfast high in carbohydrate and an isocaloric breakfast high in protein/fat on two different mornings. Incremental area under the curve and total area under the curve (0-240 minutes) for total GLP-1 and GIP were compared between groups, using non-parametric statistical methods. Post-meal GLP-1 and GIP secretion were similar in cases and controls, suggesting this process is adenosine triphosphate-sensitive potassium channel-independent. Future research will investigate whether treatments targeting the incretin pathway are effective in individuals with KCNJ11 permanent neonatal diabetes who do not have good glycemic control on sulfonylurea alone.
Abstract.
Author URL.
Naylor R, Patel K, Kettunen J, Männistö JME, Støy J, Beltrand J, Polak M, Vilsbøll T, Greeley SAW, Hattersley A, et al (2023). Systematic Review of Treatment of Beta-Cell Monogenic Diabetes.
Abstract:
Systematic Review of Treatment of Beta-Cell Monogenic Diabetes
Background Beta-cell monogenic forms of diabetes are the area of diabetes care with the strongest support for a precision medicine approach. We systematically reviewed treatment of hyperglycemia in GCK-related hyperglycemia, HNF1A-diabetes, HNF4A-diabetes, HNF1B-diabetes, Mitochondrial diabetes (MD) due to m.3243A>G variant, 6q24-transient neonatal diabetes (TND) and SLC19A2-diabetes (Thiamine-Responsive Megaloblastic Anemia, TRMA). Methods Systematic review with data sources from PubMed, MEDLINE and Embase were performed answering specific therapeutic questions for the different subtypes. Individual and group level data was extracted for glycemic outcomes in individuals with genetically confirmed monogenic diabetes. Results 147 studies met inclusion criteria with only six experimental studies (four randomized trials for HNF1A- diabetes) and the rest being single case reports or cohort studies. Most studies were rated as having moderate or serious risk of bias. For GCK-related hyperglycemia, six studies (35 individuals) showed no deterioration in HbA1c on discontinuing glucose lowering therapy. A randomized trial (n=18 per group) showed that sulfonylureas (SU) were more effective in HNF1A-diabetes than in type 2 diabetes, and cohort and case studies supported SU effectiveness in lowering HbA1c. Two crossover trials (n=15 and n=16) suggested glinides and GLP-1 receptor agonists might be used in place of SU. Evidence for HNF4A-diabetes was limited to three studies (16 individuals) showing lower HbA1c with SU therapy. The 13 studies in HNF1B-diabetes (n=301) and 10 in MD with m.3243A>G variant (n=250) showed that while some patients can be treated with oral agents the majority of patients were insulin treated. In HNF1B-diabetes the attempts to transfer from insulin to oral hypoglycemic agents (OHA) were unsuccessful in most cases. In 6q24-TND there were insufficient studies supporting OHA close to diagnosis before remission but more support for their use after relapse. In SLC19A2-diabetes there was some evidence that treatment with thiamine improved glycemic control and reduced insulin requirement while less than half achieved insulin-independency. Conclusion There is limited evidence to guide the treatment in monogenic diabetes with most studies being non-randomized and small. The combined data does support: no treatment being needed in GCK-related hyperglycemia; SU being used as the first line treatment in HNF1A-diabetes; SU can be tried in HNF4A- diabetes; insulin often needed in HNF1B-diabetes and MD with the m.3243A>G variant; SU can be tried in 6q24-TND relapse; and thiamine may improve glycemic control in SLC19A2-diabetes. Further evidence, particularly randomized comparative studies, are needed to examine the optimum treatment for glycemic response in all monogenic subtypes.
Abstract.
Thomas NJ, Walkey HC, Kaur A, Misra S, Oliver NS, Colclough K, Weedon MN, Johnston DG, Hattersley AT, Patel KA, et al (2023). The relationship between islet autoantibody status and the genetic risk of type 1 diabetes in adult-onset type 1 diabetes.
Diabetologia,
66(2), 310-320.
Abstract:
The relationship between islet autoantibody status and the genetic risk of type 1 diabetes in adult-onset type 1 diabetes.
AIMS/HYPOTHESIS: the reason for the observed lower rate of islet autoantibody positivity in clinician-diagnosed adult-onset vs childhood-onset type 1 diabetes is not known. We aimed to explore this by assessing the genetic risk of type 1 diabetes in autoantibody-negative and -positive children and adults. METHODS: We analysed GAD autoantibodies, insulinoma-2 antigen autoantibodies and zinc transporter-8 autoantibodies (ZnT8A) and measured type 1 diabetes genetic risk by genotyping 30 type 1 diabetes-associated variants at diagnosis in 1814 individuals with clinician-diagnosed type 1 diabetes (1112 adult-onset, 702 childhood-onset). We compared the overall type 1 diabetes genetic risk score (T1DGRS) and non-HLA and HLA (DR3-DQ2, DR4-DQ8 and DR15-DQ6) components with autoantibody status in those with adult-onset and childhood-onset diabetes. We also measured the T1DGRS in 1924 individuals with type 2 diabetes from the Wellcome Trust Case Control Consortium to represent non-autoimmune diabetes control participants. RESULTS: the T1DGRS was similar in autoantibody-negative and autoantibody-positive clinician-diagnosed childhood-onset type 1 diabetes (mean [SD] 0.274 [0.034] vs 0.277 [0.026], p=0.4). In contrast, the T1DGRS in autoantibody-negative adult-onset type 1 diabetes was lower than that in autoantibody-positive adult-onset type 1 diabetes (mean [SD] 0.243 [0.036] vs 0.271 [0.026], p
Abstract.
Author URL.
2022
Colclough K, van Heugten R, Patel K (2022). An update on the diagnosis and management of monogenic diabetes.
Practical Diabetes,
39(4), 42-48.
Abstract:
An update on the diagnosis and management of monogenic diabetes
Initiated in 2000, the NHS-funded genetic testing service for monogenic diabetes at the Exeter Genomics Laboratory, Royal Devon & Exeter Hospital, is the sole national provider for this service in England. The laboratory has undertaken testing for over 19,000 families and has diagnosed monogenic diabetes in over 9500 patients from the UK and across the world. Dr Kevin Colclough and colleagues here provide an insight into how genetic diagnostic testing leads to improved clinical care, how advances in testing technology are causing a paradigm shift in diagnosis, and how changes to test provision and funding are leading to the mainstreaming of genetic diagnosis in routine diabetes clinics.
Abstract.
Locke JM, Dusatkova P, Colclough K, Hughes AE, Dennis JM, Shields B, Flanagan SE, Shepherd MH, Dempster EL, Hattersley AT, et al (2022). Association of birthweight and penetrance of diabetes in individuals with HNF4A-MODY: a cohort study.
Diabetologia,
65(1), 246-249.
Author URL.
Besci Ö, Patel KA, Yıldız G, Tüfekçi Ö, Acinikli KY, Erbaş İM, Abacı A, Böber E, Bayram MT, Yılmaz Ş, et al (2022). Atypical comorbidities in a child considered to have type 1 diabetes led to the diagnosis of SLC29A3 spectrum disorder.
Hormones (Athens),
21(3), 501-506.
Abstract:
Atypical comorbidities in a child considered to have type 1 diabetes led to the diagnosis of SLC29A3 spectrum disorder.
INTRODUCTION: SLC29A3 spectrum disorder is an autosomal, recessively inherited, autoinflammatory, multisystem disorder characterized by distinctive cutaneous features, including hyperpigmentation or hypertrichosis, hepatosplenomegaly, hearing loss, cardiac anomalies, hypogonadism, short stature, and insulin-dependent diabetes. CASE PRESENTATION: Herein, we report a 6-year-old boy who presented with features resembling type 1 diabetes mellitus, but his clinical course was complicated by IgA nephropathy, pure red cell aplasia, and recurrent febrile episodes. The patient was tested for the presence of pathogenic variants in 53 genes related to monogenic diabetes and found to be compound heterozygous for two SLC29A3 pathogenic variants (p. Arg386Gln and p. Leu298fs). CONCLUSION: This case demonstrated that SLC29A3 spectrum disorder should be included in the differential diagnosis of diabetes with atypical comorbidities, even when the distinctive dermatological hallmarks of SLC29A3 spectrum disorder are entirely absent.
Abstract.
Author URL.
Wyatt RC, Hagopian WA, Roep BO, Patel KA, Resnick B, Dobbs R, Hudson M, EXE-T1D Consortium, De Franco E, Ellard S, et al (2022). Congenital beta cell defects are not associated with markers of islet autoimmunity, even in the context of high genetic risk for type 1 diabetes.
Diabetologia,
65(7), 1179-1184.
Abstract:
Congenital beta cell defects are not associated with markers of islet autoimmunity, even in the context of high genetic risk for type 1 diabetes.
AIMS/HYPOTHESIS: a key unanswered question in type 1 diabetes is whether beta cells initiate their own destruction or are victims of an aberrant immune response (beta cell suicide or homicide?). To investigate this, we assessed islet autoantibodies in individuals with congenital beta cell defects causing neonatal diabetes mellitus (NDM). METHODS: We measured autoantibodies to GAD (GADA), islet antigen-2 (IA-2A) and zinc transporter 8 (ZnT8A) in 242 individuals with NDM (median age diagnosed 1.8 months [IQR 0.39-2.9 months]; median age collected 4.6 months [IQR 1.8-27.6 months]; median diabetes duration 2 months [IQR 0.6-23 months]), including 75 whose NDM resulted from severe beta cell endoplasmic reticulum (ER) stress. As a control cohort we also tested samples from 69 diabetes-free individuals (median age collected 9.9 months [IQR 9.0-48.6 months]) for autoantibodies. RESULTS: We found low prevalence of islet autoantibodies in individuals with monogenic NDM; 13/242 (5.4% [95% CI 2.9, 9.0%]) had detectable GADA, IA-2A and/or ZnT8A. This was similar to the proportion in the control participants who did not have diabetes (1/69 positive [1.4%, 95% CI 0.03, 7.8%], p=0.3). Importantly, monogenic individuals with beta cell ER stress had a similar rate of GADA/IA-2A/ZnT8A positivity to non-ER stress aetiologies (2.7% [95% CI 0.3, 9.3%] vs 6.6% [95% CI 3.3, 11.5%] p=0.4). We observed no association between islet autoimmunity and genetic risk, age at testing (including 30 individuals >10 years at testing) or diabetes duration (p>0.4 for all). CONCLUSIONS/INTERPRETATION: Our data support the hypothesis that beta cell stress/dysfunction alone does not lead to the production of islet autoantibodies, even in the context of high-risk HLA types. This suggests that additional factors are required to trigger an autoimmune response towards beta cells.
Abstract.
Author URL.
Laver TW, Wakeling MN, Knox O, Colclough K, Wright CF, Ellard S, Hattersley AT, Weedon MN, Patel KA (2022). Evaluation of Evidence for Pathogenicity Demonstrates That BLK, KLF11, and PAX4 Should Not be Included in Diagnostic Testing for MODY.
Diabetes,
71(5), 1128-1136.
Abstract:
Evaluation of Evidence for Pathogenicity Demonstrates That BLK, KLF11, and PAX4 Should Not be Included in Diagnostic Testing for MODY.
Maturity-onset diabetes of the young (MODY) is an autosomal dominant form of monogenic diabetes, reported to be caused by variants in 16 genes. Concern has been raised about whether variants in BLK (MODY11), KLF11 (MODY7), and PAX4 (MODY9) cause MODY. We examined variant-level genetic evidence (cosegregation with diabetes and frequency in population) for published putative pathogenic variants in these genes and used burden testing to test gene-level evidence in a MODY cohort (n = 1,227) compared with a control population (UK Biobank [n = 185,898]). For comparison we analyzed well-established causes of MODY, HNF1A, and HNF4A. The published variants in BLK, KLF11, and PAX4 showed poor cosegregation with diabetes (combined logarithm of the odds [LOD] scores ≤1.2), compared with HNF1A and HNF4A (LOD scores >9), and are all too common to cause MODY (minor allele frequency >4.95 × 10-5). Ultra-rare missense and protein-truncating variants (PTV) were not enriched in a MODY cohort compared with the UK Biobank population (PTV P > 0.05, missense P > 0.1 for all three genes) while HNF1A and HNF4A were enriched (P < 10-6). Findings of sensitivity analyses with different population cohorts supported our results. Variant and gene-level genetic evidence does not support BLK, KLF11, or PAX4 as a cause of MODY. They should not be included in MODY diagnostic genetic testing.
Abstract.
Author URL.
Mirshahi UL, Bhan A, Tholen LE, Fang B, Chen G, Moore B, Cook A, Anand PM, Patel K, Haas ME, et al (2022). Framework from a Multidisciplinary Approach for Transitioning Variants of Unknown Significance from Clinical Genetic Testing in Kidney Disease to a Definitive Classification.
Kidney International Reports,
7(9), 2047-2058.
Abstract:
Framework from a Multidisciplinary Approach for Transitioning Variants of Unknown Significance from Clinical Genetic Testing in Kidney Disease to a Definitive Classification
Introduction: Monogenic causes in over 300 kidney-associated genes account for approximately 12% of end stage kidney disease (ESKD) cases. Advances in sequencing and large customized panels enable the noninvasive diagnosis of monogenic kidney disease at relatively low cost, thereby allowing for more precise management for patients and their families. A major challenge is interpreting rare variants, many of which are classified as variants of unknown significance (VUS). We present a framework in which we thoroughly evaluated and provided evidence of pathogenicity for HNF1B-p.Arg303His, a VUS returned from clinical diagnostic testing for a kidney transplant candidate. Methods: a blueprint was designed by a multidisciplinary team of clinicians, molecular biologists, and diagnostic geneticists. The blueprint included using a health system-based cohort with genetic and clinical information to perform deep phenotyping of VUS heterozygotes to identify the candidate VUS and rule out other VUS, examination of existing genetic databases, as well as functional testing. Results: Our approach demonstrated evidence for pathogenicity for HNF1B-p.Arg303His by showing similar burden of kidney manifestations in this variant to known HNF1B pathogenic variants, and greater burden compared to noncarriers. Conclusion: Determination of a molecular diagnosis for the example family allows for proper surveillance and management of HNF1B-related manifestations such as kidney disease, diabetes, and hypomagnesemia with important implications for safe living-related kidney donation. The candidate gene-variant pair also allows for clinical biomarker testing for aberrations of linked pathways. This working model may be applicable to other diseases of genetic etiology.
Abstract.
Ruth KS, Beaumont RN, Locke JM, Tyrrell J, Crandall CJ, Hawkes G, Frayling TM, Prague JK, Patel KA, Wood AR, et al (2022). Genomic insights into the mechanism of NK3R antagonists for treatment of menopausal vasomotor symptoms.
Colclough K, Patel K (2022). How do I diagnose Maturity Onset Diabetes of the Young in my patients?.
Clin Endocrinol (Oxf),
97(4), 436-447.
Abstract:
How do I diagnose Maturity Onset Diabetes of the Young in my patients?
Maturity Onset Diabetes of the Young (MODY) is a monogenic form of diabetes diagnosed in young individuals that lack the typical features of type 1 and type 2 diabetes. The genetic subtype of MODY determines the most effective treatment and this is the driver for MODY genetic testing in diabetes populations. Despite the obvious clinical and health economic benefits, MODY is significantly underdiagnosed with the majority of patients being inappropriately managed as having type 1 or type 2 diabetes. Low detection rates result from the difficulty in identifying patients with a likely diagnosis of MODY from the high background population of young onset type 1 and type 2 diabetes, compounded by the lack of MODY awareness and education in diabetes care physicians. MODY diagnosis can be improved through (1) access to education and training, (2) the use of sensitive and specific selection criteria based on accurate prediction models and biomarkers to identify patients for testing, (3) the development and mainstream implementation of simple criteria-based selection pathways applicable across a range of healthcare settings and ethnicities to select the most appropriate patients for genetic testing and (4) the correct use of next generation sequencing technology to provide accurate and comprehensive testing of all known MODY and monogenic diabetes genes. The creation and public sharing of educational materials, clinical and scientific best practice guidelines and genetic variants will help identify the missing patients so they can benefit from the more effective clinical care that a genetic diagnosis brings.
Abstract.
Author URL.
Grace SL, Bowden J, Walkey HC, Kaur A, Misra S, Shields BM, McKinley TJ, Oliver NS, McDonald TJ, Johnston DG, et al (2022). Islet Autoantibody Level Distribution in Type 1 Diabetes and Their Association with Genetic and Clinical Characteristics.
J Clin Endocrinol Metab,
107(12), e4341-e4349.
Abstract:
Islet Autoantibody Level Distribution in Type 1 Diabetes and Their Association with Genetic and Clinical Characteristics.
CONTEXT: the importance of the autoantibody level at diagnosis of type 1 diabetes (T1D) is not clear. OBJECTIVE: We aimed to assess the association of glutamate decarboxylase (GADA), islet antigen-2 (IA-2A), and zinc transporter 8 (ZnT8A) autoantibody levels with clinical and genetic characteristics at diagnosis of T1D. METHODS: We conducted a prospective, cross-sectional study. GADA, IA-2A, and ZnT8A were measured in 1644 individuals with T1D at diagnosis using radiobinding assays. Associations between autoantibody levels and the clinical and genetic characteristics for individuals were assessed in those positive for these autoantibodies. We performed replication in an independent cohort of 449 people with T1D. RESULTS: GADA and IA-2A levels exhibited a bimodal distribution at diagnosis. High GADA level was associated with older age at diagnosis (median 27 years vs 19 years, P = 9 × 10-17), female sex (52% vs 37%, P = 1 × 10-8), other autoimmune diseases (13% vs 6%, P = 3 × 10-6), and HLA-DR3-DQ2 (58% vs 51%, P =. 006). High IA-2A level was associated with younger age of diagnosis (median 17 years vs 23 years, P = 3 × 10-7), HLA-DR4-DQ8 (66% vs 50%, P = 1 × 10-6), and ZnT8A positivity (77% vs 52%, P = 1 × 10-15). We replicated our findings in an independent cohort of 449 people with T1D where autoantibodies were measured using enzyme-linked immunosorbent assays. CONCLUSION: Islet autoantibody levels provide additional information over positivity in T1D at diagnosis. Bimodality of GADA and IA-2A autoantibody levels highlights the novel aspect of heterogeneity of T1D. This may have implications for T1D prediction, treatment, and pathogenesis.
Abstract.
Author URL.
Ikaheimo K, Herranen A, Iivanainen V, Lankinen T, Aarnisalo AA, Sivonen V, Patel KA, Demir K, Saarma M, Lindahl M, et al (2022). MANF supports the inner hair cell synapse and the outer hair cell stereocilia bundle in the cochlea.
LIFE SCIENCE ALLIANCE,
5(2).
Author URL.
Patel KA, Burman S, Laver TW, Hattersley AT, Frayling TM, Weedon MN (2022). PLIN1 Haploinsufficiency Causes a Favorable Metabolic Profile.
J Clin Endocrinol Metab,
107(6), e2318-e2323.
Abstract:
PLIN1 Haploinsufficiency Causes a Favorable Metabolic Profile.
CONTEXT: PLIN1 encodes perilipin-1, which coats lipid droplets in adipocytes and is involved in droplet formation, triglyceride storage, and lipolysis. Rare PLIN1 frameshift variants that extend the translated protein have been described to cause lipodystrophy. OBJECTIVE: This work aimed to test whether PLIN1 protein-truncating variants (PTVs) cause lipodystrophy in a large population-based cohort. METHODS: We identified individuals with PLIN1 PTVs in individuals with exome data in the UK Biobank. We performed gene-burden testing for individuals with PLIN1 PTVs. We replicated the associations using data from the T2D Knowledge portal. We performed a phenome-wide association study using publicly available association statistics. A total of 362 791 individuals in the UK Biobank, a population-based cohort, and 43 125 individuals in the T2D Knowledge portal, a type 2 diabetes (T2D) case-control study, were included in the analyses. Main outcome measures included 22 diseases and traits relevant to lipodystrophy. RESULTS: the 735 individuals with PLIN1 PTVs had a favorable metabolic profile. These individuals had increased high-density lipoprotein cholesterol (0.12 mmol/L; 95% CI, 0.09 to 0.14, P
=
2
×
10-18), reduced triglycerides (-0.22 mmol/L; 95% CI, -0.29 to -0.14, P
=
3
×
10-11), reduced waist-to-hip ratio (-0.02; 95% CI, -0.02 to -0.01, P
=
9
×
10-12), and reduced systolic blood pressure (-1.67 mm Hg; 95% CI, -3.25 to -0.09, P
=
.05). These associations were consistent in the smaller T2D Knowledge portal cohort. In the UK Biobank, PLIN1 PTVs were associated with reduced risk of myocardial infarction (odds ratio [OR]
=
0.59; 95% CI, 0.35 to 0.93, P
=
.02) and hypertension (OR
=
0.85; 95% CI, 0.73 to 0.98, P
=
.03), but not T2D (OR
=
0.99; 95% CI, 0.63-1.51, P
=
.99). CONCLUSION: Our study suggests that PLIN1 haploinsufficiency causes a favorable metabolic profile and may protect against cardiovascular disease.
Abstract.
Author URL.
Cannon S, Clissold R, Sukcharoen K, Tuke M, Hawkes G, Beaumont RN, Wood AR, Gilchrist M, Hattersley AT, Oram RA, et al (2022). Recurrent 17q12 microduplications contribute to renal disease but not diabetes.
Journal of Medical Genetics,
60(5), 491-497.
Abstract:
Recurrent 17q12 microduplications contribute to renal disease but not diabetes
Background17q12 microdeletion and microduplication syndromes present as overlapping, multisystem disorders. We assessed the disease phenotypes of individuals with 17q12 CNV in a population-based cohort.MethodsWe investigated 17q12 CNV using microarray data from 450 993 individuals in the UK Biobank and calculated disease status associations for diabetes, liver and renal function, neurological and psychiatric traits.ResultsWe identified 11 17q12 microdeletions and 106 microduplications. Microdeletions were strongly associated with diabetes (p=2×10−7) but microduplications were not. Estimated glomerular filtration rate (eGFR mL/min/1.73 m2) was consistently lower in individuals with microdeletions (p=3×10−12) and microduplications (p=6×10−25). Similarly, eGFR <60, including end-stage renal disease, was associated with microdeletions (p=2×10−9, p<0.003) and microduplications (p=1×10−9, p=0.009), respectively, highlighting sometimes substantially reduced renal function in each. Microduplications were associated with decreased fluid intelligence (p=3×10−4). SNP association analysis in the 17q12 region implicated changes toHNF1Bas causing decreased eGFR (NC_000017.11:g.37741642T>G, rs12601991, p=4×10−21) and diabetes (NC_000017.11:g.37741165C>T, rs7501939, p=6×10−17). A second locus within the region was also associated with fluid intelligence (NC_000017.11:g.36593168T>C, rs1005552, p=6×10−9) and decreased eGFR (NC_000017.11:g.36558947T>C, rs12150665, p=4×10–15).ConclusionWe demonstrate 17q12 microdeletions but not microduplications are associated with diabetes in a population-based cohort, likely caused byHNF1Bhaploinsufficiency. We show that both 17q12 microdeletions and microduplications are associated with renal disease, and multiple genes within the region likely contribute to renal and neurocognitive phenotypes.
Abstract.
Mirshahi UL, Colclough K, Wright CF, Wood AR, Beaumont RN, Tyrrell J, Laver TW, Stahl R, Golden A, Goehringer JM, et al (2022). Reduced penetrance of MODY-associated HNF1A/HNF4A variants but not GCK variants in clinically unselected cohorts.
Am J Hum Genet,
109(11), 2018-2028.
Abstract:
Reduced penetrance of MODY-associated HNF1A/HNF4A variants but not GCK variants in clinically unselected cohorts.
The true prevalence and penetrance of monogenic disease variants are often not known because of clinical-referral ascertainment bias. We comprehensively assess the penetrance and prevalence of pathogenic variants in HNF1A, HNF4A, and GCK that account for >80% of monogenic diabetes. We analyzed clinical and genetic data from 1,742 clinically referred probands, 2,194 family members, clinically unselected individuals from a US health system-based cohort (n = 132,194), and a UK population-based cohort (n = 198,748). We show that one in 1,500 individuals harbor a pathogenic variant in one of these genes. The penetrance of diabetes for HNF1A and HNF4A pathogenic variants was substantially lower in the clinically unselected individuals compared to clinically referred probands and was dependent on the setting (32% in the population, 49% in the health system cohort, 86% in a family member, and 98% in probands for HNF1A). The relative risk of diabetes was similar across the clinically unselected cohorts highlighting the role of environment/other genetic factors. Surprisingly, the penetrance of pathogenic GCK variants was similar across all cohorts (89%-97%). We highlight that pathogenic variants in HNF1A, HNF4A, and GCK are not ultra-rare in the population. For HNF1A and HNF4A, we need to tailor genetic interpretation and counseling based on the setting in which a pathogenic monogenic variant was identified. GCK is an exception with near-complete penetrance in all settings. This along with the clinical implication of diagnosis makes it an excellent candidate for the American College of Medical Genetics secondary gene list.
Abstract.
Author URL.
Colclough K, Patel K (2022). Response to Comment on Colclough et al. and Saint-Martin et al. Syndromic Monogenic Diabetes Genes Should be Tested in Patients with a Clinical Suspicion of Maturity-Onset Diabetes of the Young. Diabetes 2022;71:530–537, and Gene Panel Sequencing of Patients with Monogenic Diabetes Brings to Light Genes Typically Associated with Syndromic Presentations. Diabetes 2022;71:578–584. Diabetes, 71(9), e11-e12.
Laver TW, De Franco E, Johnson MB, Patel KA, Ellard S, Weedon MN, Flanagan SE, Wakeling MN (2022). SavvyCNV: Genome-wide CNV calling from off-target reads.
PLOS Computational Biology,
18(3), e1009940-e1009940.
Abstract:
SavvyCNV: Genome-wide CNV calling from off-target reads
Identifying copy number variants (CNVs) can provide diagnoses to patients and provide important biological insights into human health and disease. Current exome and targeted sequencing approaches cannot detect clinically and biologically-relevant CNVs outside their target area. We present SavvyCNV, a tool which uses off-target read data from exome and targeted sequencing data to call germline CNVs genome-wide. Up to 70% of sequencing reads from exome and targeted sequencing fall outside the targeted regions. We have developed a new tool, SavvyCNV, to exploit this ‘free data’ to call CNVs across the genome. We benchmarked SavvyCNV against five state-of-the-art CNV callers using truth sets generated from genome sequencing data and Multiplex Ligation-dependent Probe Amplification assays. SavvyCNV called CNVs with high precision and recall, outperforming the five other tools at calling CNVs genome-wide, using off-target or on-target reads from targeted panel and exome sequencing. We then applied SavvyCNV to clinical samples sequenced using a targeted panel and were able to call previously undetected clinically-relevant CNVs, highlighting the utility of this tool within the diagnostic setting. SavvyCNV outperforms existing tools for calling CNVs from off-target reads. It can call CNVs genome-wide from targeted panel and exome data, increasing the utility and diagnostic yield of these tests. SavvyCNV is freely available at https://github.com/rdemolgen/SavvySuite.
Abstract.
Colclough K, Ellard S, Hattersley A, Patel K (2022). Syndromic Monogenic Diabetes Genes Should be Tested in Patients with a Clinical Suspicion of Maturity-Onset Diabetes of the Young.
Diabetes,
71(3), 530-537.
Abstract:
Syndromic Monogenic Diabetes Genes Should be Tested in Patients with a Clinical Suspicion of Maturity-Onset Diabetes of the Young.
At present, outside of infancy, genetic testing for monogenic diabetes is typically for mutations in maturity-onset diabetes of the young (MODY) genes that predominantly result in isolated diabetes. Monogenic diabetes syndromes are usually only tested for when supported by specific syndromic clinical features. How frequently patients with suspected MODY have a mutation in a monogenic syndromic diabetes gene is unknown and thus missed by present testing regimes. We performed genetic testing of 27 monogenic diabetes genes (including 18 associated with syndromic diabetes) for 1,280 patients with a clinical suspicion of MODY who were not suspected of having monogenic syndromic diabetes. We confirmed monogenic diabetes in 297 (23%) patients. Mutations in seven different syndromic diabetes genes accounted for 19% (95% CI 15-24%) of all monogenic diabetes. The mitochondrial m.3243A>G and mutations in HNF1B were responsible for the majority of mutations in syndromic diabetes genes. They were also the 4th and 5th most common causes of monogenic diabetes overall. These patients lacked typical features, and their diabetes phenotypes overlapped with patients with nonsyndromic monogenic diabetes. Syndromic monogenic diabetes genes (particularly m.3243A>G and HNF1B) should be routinely tested in patients with suspected MODY who do not have typical features of a genetic syndrome.
Abstract.
Author URL.
Patel KA, Ozbek MN, Yildiz M, Guran T, Kocyigit C, Acar S, Siklar Z, Atar M, Colclough K, Houghton J, et al (2022). Systematic genetic testing for recessively inherited monogenic diabetes: a cross-sectional study in paediatric diabetes clinics.
Diabetologia,
65(2), 336-342.
Abstract:
Systematic genetic testing for recessively inherited monogenic diabetes: a cross-sectional study in paediatric diabetes clinics.
AIMS/HYPOTHESIS: Current clinical guidelines for childhood-onset monogenic diabetes outside infancy are mainly focused on identifying and testing for dominantly inherited, predominantly MODY genes. There are no systematic studies of the recessively inherited causes of monogenic diabetes that are likely to be more common in populations with high rates of consanguinity. We aimed to determine the contribution of recessive causes of monogenic diabetes in paediatric diabetes clinics and to identify clinical criteria by which to select individuals for recessive monogenic diabetes testing. METHODS: We conducted a cross-sectional study of 1093 children from seven paediatric diabetes clinics across Turkey (a population with high rates of consanguinity). We undertook genetic testing of 50 known dominant and recessive causes of monogenic diabetes for 236 children at low risk of type 1 diabetes. As a comparison, we used monogenic diabetes cases from UK paediatric diabetes clinics (a population with low rates of consanguinity). RESULTS: Thirty-four children in the Turkish cohort had monogenic diabetes, equating to a minimal prevalence of 3.1%, similar to that in the UK cohort (p = 0.40). Forty-one per cent (14/34) had autosomal recessive causes in contrast to 1.6% (2/122) in the UK monogenic diabetes cohort (p 10%) assisted the identification of the dominant (all p ≤ 0.0003) but not recessive cases (all p ≥ 0.2) in Turkey. The presence of certain non-autoimmune extra-pancreatic features greatly assisted the identification of recessive (p
Abstract.
Author URL.
2021
Wakeling M, Owens N, Hopkinson J, Johnson M, Houghton JAL, Dastamani A, Flaxman C, Wyatt R, Hewat T, Hopkins J, et al (2021). A novel disease mechanism leading to the expression of a disallowed gene in the pancreatic beta-cell identified by non-coding, regulatory mutations controlling <i>HK1</i>.
Abstract:
A novel disease mechanism leading to the expression of a disallowed gene in the pancreatic beta-cell identified by non-coding, regulatory mutations controlling HK1
Gene expression is tightly regulated with many genes exhibiting cell-specific silencing when their protein product would disrupt normal cellular function. This silencing is largely controlled by non-coding elements and their disruption might cause human disease. We performed gene-agnostic screening of the non-coding regions to discover new molecular causes of congenital hyperinsulinism. This identified 14 non-coding de novo mutations affecting a 42bp conserved region encompassed by a regulatory element in intron 2 of Hexokinase 1 ( HK1 ), a pancreatic beta-cell disallowed gene. We demonstrated that these mutations resulted in expression of HK1 in the pancreatic beta-cells causing inappropriate insulin secretion and congenital hyperinsulinism. These mutations identify a regulatory region critical for cell-specific silencing. Importantly, this has revealed a new disease mechanism for non-coding mutations that cause inappropriate expression of a disallowed gene.
Abstract.
Hewat TI, Yau D, Jerome JCS, Laver TW, Houghton JAL, Shields BM, Flanagan SE, Patel KA (2021). Birth weight and diazoxide unresponsiveness strongly predict the likelihood of congenital hyperinsulinism due to a mutation in ABCC8 or KCNJ11.
European Journal of Endocrinology,
185(6), 813-818.
Abstract:
Birth weight and diazoxide unresponsiveness strongly predict the likelihood of congenital hyperinsulinism due to a mutation in ABCC8 or KCNJ11
Objective
Mutations in the KATP channel genes, ABCC8 and KCNJ11, are the most common cause of congenital hyperinsulinism. The diagnosis of KATP-hyperinsulinism is important for the clinical management of the condition. We aimed to determine the clinical features that help to identify KATP-hyperinsulinism at diagnosis.
Design
We studied 761 individuals with KATP-hyperinsulinism and 862 probands with hyperinsulinism of unknown aetiology diagnosed before 6 months of age. All were referred as part of routine clinical care.
Methods
We compared the clinical features of KATP-hyperinsulinism and unknown hyperinsulinism cases. We performed logistic regression and receiver operator characteristic (ROC) analysis to identify the features that predict KATP-hyperinsulinism.
Results
Higher birth weight, diazoxide unresponsiveness and diagnosis in the first week of life were independently associated with KATP-hyperinsulinism (adjusted odds ratio: 4.5 (95% CI: 3.4–5.9), 0.09 (0.06–0.13) and 3.3 (2.0–5.0) respectively). Birth weight and diazoxide unresponsiveness were additive and highly discriminatory for identifying KATP-hyperinsulinism (ROC area under the curve for birth weight 0.80, diazoxide responsiveness 0.77, and together 0.88, 95% CI: 0.85–0.90). In this study, 86% born large for gestation and 78% born appropriate for gestation and who did not respond to diazoxide treatment had KATP-hyperinsulinism. In contrast, of those individuals born small for gestation, none who were diazoxide responsive and only 4% of those who were diazoxide unresponsive had KATP-hyperinsulinism.
Conclusions
Individuals with hyperinsulinism born appropriate or large for gestation and unresponsive to diazoxide treatment are most likely to have an ABCC8 or KCNJ11 mutation. These patients should be prioritised for genetic testing of KATP channel genes.
Abstract.
Thomas NJ, Dennis JM, Sharp SA, Kaur A, Misra S, Walkey HC, Johnston DG, Oliver NS, Hagopian WA, Weedon MN, et al (2021). Correction to: DR15-DQ6 remains dominantly protective against type 1 diabetes throughout the first five decades of life. Diabetologia, 65(1), 258-258.
Thomas NJ, Dennis JM, Sharp SA, Kaur A, Misra S, Walkey HC, Johnston DG, Oliver NS, Hagopian WA, Weedon MN, et al (2021). DR15-DQ6 remains dominantly protective against type 1 diabetes throughout the first five decades of life.
Diabetologia,
64(10), 2258-2265.
Abstract:
DR15-DQ6 remains dominantly protective against type 1 diabetes throughout the first five decades of life.
AIMS/HYPOTHESIS: Among white European children developing type 1 diabetes, the otherwise common HLA haplotype DR15-DQ6 is rare, and highly protective. Adult-onset type 1 diabetes is now known to represent more overall cases than childhood onset, but it is not known whether DR15-DQ6 is protective in older-adult-onset type 1 diabetes. We sought to quantify DR15-DQ6 protection against type 1 diabetes as age of onset increased. METHODS: in two independent cohorts we assessed the proportion of type 1 diabetes cases presenting through the first 50 years of life with DR15-DQ6, compared with population controls. In the After Diabetes Diagnosis Research Support System-2 (ADDRESS-2) cohort (n = 1458) clinician-diagnosed type 1 diabetes was confirmed by positivity for one or more islet-specific autoantibodies. In UK Biobank (n = 2502), we estimated type 1 diabetes incidence rates relative to baseline HLA risk for each HLA group using Poisson regression. Analyses were restricted to white Europeans and were performed in three groups according to age at type 1 diabetes onset: 0-18 years, 19-30 years and 31-50 years. RESULTS: DR15-DQ6 was protective against type 1 diabetes through to age 50 years (OR
Abstract.
Author URL.
Grace SL, Bowden J, Walkey HC, Kaur A, Misra S, Shields BM, McKinley TJ, Oliver NS, McDonald T, Johnston DG, et al (2021). Islet autoantibody level distributions in type 1 diabetes and their association with genetic and clinical characteristics.
Montaser H, Patel KA, Balboa D, Ibrahim H, Lithovius V, Näätänen A, Chandra V, Demir K, Acar S, Ben-Omran T, et al (2021). Loss of MANF Causes Childhood-Onset Syndromic Diabetes Due to Increased Endoplasmic Reticulum Stress.
Diabetes,
70(4), 1006-1018.
Abstract:
Loss of MANF Causes Childhood-Onset Syndromic Diabetes Due to Increased Endoplasmic Reticulum Stress.
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-resident protein that plays a crucial role in attenuating ER stress responses. Although MANF is indispensable for the survival and function of mouse β-cells, its precise role in human β-cell development and function is unknown. In this study, we show that lack of MANF in humans results in diabetes due to increased ER stress, leading to impaired β-cell function. We identified two patients from different families with childhood diabetes and a neurodevelopmental disorder associated with homozygous loss-of-function mutations in the MANF gene. To study the role of MANF in human β-cell development and function, we knocked out the MANF gene in human embryonic stem cells and differentiated them into pancreatic endocrine cells. Loss of MANF induced mild ER stress and impaired insulin-processing capacity of β-cells in vitro. Upon implantation to immunocompromised mice, the MANF knockout grafts presented elevated ER stress and functional failure, particularly in recipients with diabetes. By describing a new form of monogenic neurodevelopmental diabetes syndrome caused by disturbed ER function, we highlight the importance of adequate ER stress regulation for proper human β-cell function and demonstrate the crucial role of MANF in this process.
Abstract.
Author URL.
Johnson MB, Hattersley AT, Patel KA (2021). More on STAT1 Gain of Function, Type 1 Diabetes, and JAK Inhibition.
N Engl J Med,
384(1).
Author URL.
Thomas NJ, Walkey HC, Kaur A, Misra S, Oliver NS, Colclough K, Weedon MN, Johnston DG, Hattersley AT, Patel KA, et al (2021). The Absence of Islet Autoantibodies in Clinically Diagnosed Older-Adult Onset Type 1 Diabetes Suggests an Alternative Pathology, Advocating for Routine Testing in This Age Group.
Thomas NJ, Walkey HC, Kaur A, Misra S, Oliver NS, Colclough K, Weedon MN, Johnston DG, Hattersley AT, Patel KA, et al (2021). The absence of islet autoantibodies in clinically diagnosed older-adult onset type 1 diabetes suggests an alternative pathology, advocating for routine testing in this age group.
MedrxivAbstract:
The absence of islet autoantibodies in clinically diagnosed older-adult onset type 1 diabetes suggests an alternative pathology, advocating for routine testing in this age group
AbstractObjectiveIslet autoantibodies at diagnosis are not well studied in older-adult onset (>30years) type 1 diabetes due to difficulties of accurate diagnosis. We used a type 1 diabetes genetic risk score (T1DGRS) to identify type 1 diabetes aiming to evaluate the prevalence and pattern of autoantibodies in older-adult onset type 1 diabetes.MethodsWe used a 30 variant T1DGRS in 1866 white-European individuals to genetically confirm a clinical diagnosis of new onset type 1 diabetes. We then assessed the prevalence and pattern of GADA, IA2A and ZnT8A within genetically consistent type 1 diabetes across three age groups (<18years (n=702), 18-30years (n=524) and >30years (n=588)).FindingsIn autoantibody positive cases T1DGRS was consistent with 100% type 1 diabetes in each age group. Conversely in autoantibody negative cases, T1DGRS was consistent with 93%(56/60) of <18years, 55%(37/67) of 18-30years and just 23%(34/151) of >30years having type 1 diabetes. Restricting analysis to genetically consistent type 1 diabetes showed similar proportions of positive autoantibodies across age groups (92% <18years, 92% 18-30years, 93% >30years)[p=0.87]. GADA was the most common autoantibody in older-adult onset type 1 diabetes, identifying 95% of autoantibody positive cases versus 72% in those <18years.InterpretationOlder adult-onset type 1 diabetes has identical rates but different patterns of positive autoantibodies to childhood onset. In clinically suspected type 1 diabetes in older-adults, absence of autoantibodies strongly suggests non-autoimmune diabetes. Our findings suggest the need to change guidelines from measuring islet autoantibodies where there is diagnostic uncertainty to measuring at least GADA in all suspected adult type 1 diabetes cases.
Abstract.
Dennis JM, Mateen BA, Sonabend R, Thomas NJ, Patel KA, Hattersley AT, Denaxas S, McGovern AP, Vollmer SJ (2021). Type 2 Diabetes and COVID-19-Related Mortality in the Critical Care Setting: a National Cohort Study in England, March-July 2020.
Diabetes Care,
44(1), 50-57.
Abstract:
Type 2 Diabetes and COVID-19-Related Mortality in the Critical Care Setting: a National Cohort Study in England, March-July 2020.
OBJECTIVE: to describe the relationship between type 2 diabetes and all-cause mortality among adults with coronavirus disease 2019 (COVID-19) in the critical care setting. RESEARCH DESIGN AND METHODS: This was a nationwide retrospective cohort study in people admitted to hospital in England with COVID-19 requiring admission to a high dependency unit (HDU) or intensive care unit (ICU) between 1 March 2020 and 27 July 2020. Cox proportional hazards models were used to estimate 30-day in-hospital all-cause mortality associated with type 2 diabetes, with adjustment for age, sex, ethnicity, obesity, and other major comorbidities (chronic respiratory disease, asthma, chronic heart disease, hypertension, immunosuppression, chronic neurological disease, chronic renal disease, and chronic liver disease). RESULTS: a total of 19,256 COVID-19-related HDU and ICU admissions were included in the primary analysis, including 13,809 HDU (mean age 70 years) and 5,447 ICU (mean age 58 years) admissions. of those admitted, 3,524 (18.3%) had type 2 diabetes and 5,077 (26.4%) died during the study period. Patients with type 2 diabetes were at increased risk of death (adjusted hazard ratio [aHR] 1.23 [95% CI 1.14, 1.32]), and this result was consistent in HDU and ICU subsets. The relative mortality risk associated with type 2 diabetes decreased with higher age (age 18-49 years aHR 1.50 [95% CI 1.05, 2.15], age 50-64 years 1.29 [1.10, 1.51], and age ≥65 years 1.18 [1.09, 1.29]; P value for age-type 2 diabetes interaction = 0.002). CONCLUSIONS: Type 2 diabetes may be an independent prognostic factor for survival in people with severe COVID-19 requiring critical care treatment, and in this setting the risk increase associated with type 2 diabetes is greatest in younger people.
Abstract.
Author URL.
Weedon MN, Wright CF, Patel KA, Frayling TM (2021). Unreliability of genotyping arrays for detecting very rare variants in human genetic studies: Example from a recent study of MC4R.
Cell,
184(7).
Author URL.
2020
Hughes AE, Hayes MG, Egan AM, Patel KA, Scholtens DM, Lowe LP, Lowe Jr WL, Dunne FP, Hattersley AT, Freathy RM, et al (2020). All thresholds of maternal hyperglycaemia from the WHO 2013 criteria for gestational diabetes identify women with a higher genetic risk for type 2 diabetes.
Wellcome Open Research,
5, 175-175.
Abstract:
All thresholds of maternal hyperglycaemia from the WHO 2013 criteria for gestational diabetes identify women with a higher genetic risk for type 2 diabetes
Background: Using genetic scores for fasting plasma glucose (FPG GS) and type 2 diabetes (T2D GS), we investigated whether the fasting, 1-hour and 2-hour glucose thresholds from the WHO 2013 criteria for gestational diabetes (GDM) have different implications for genetic susceptibility to raised fasting glucose and type 2 diabetes in women from the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) and Atlantic Diabetes in Pregnancy (DIP) studies. Methods: Cases were divided into three subgroups: (i) FPG ≥5.1 mmol/L only, n=222; (ii) 1-hour glucose post 75 g oral glucose load ≥10 mmol/L only, n=154 (iii) 2-hour glucose ≥8.5 mmol/L only, n=73; and (iv) both FPG ≥5.1 mmol/L and either of a 1-hour glucose ≥10 mmol/L or 2-hour glucose ≥8.5 mmol/L, n=172. We compared the FPG and T2D GS of these groups with controls (n=3,091) in HAPO and DIP separately. Results: in HAPO and DIP, the mean FPG GS in women with a FPG ≥5.1 mmol/L, either on its own or with 1-hour glucose ≥10 mmol/L or 2-hour glucose ≥8.5 mmol/L, was higher than controls (all P <0.01). Mean T2D GS in women with a raised FPG alone or with either a raised 1-hour or 2-hour glucose was higher than controls (all P <0.05). GDM defined by 1-hour or 2-hour hyperglycaemia only was also associated with a higher T2D GS than controls (all P <0.05). Conclusions: the different diagnostic categories that are part of the WHO 2013 criteria for GDM identify women with a genetic predisposition to type 2 diabetes as well as a risk for adverse pregnancy outcomes.
Abstract.
Hughes AE, Hayes MG, Egan AM, Patel KA, Scholtens DM, Lowe LP, Lowe Jr WL, Dunne FP, Hattersley AT, Freathy RM, et al (2020). All thresholds of maternal hyperglycaemia from the WHO 2013 criteria for gestational diabetes identify women with a higher genetic risk for type 2 diabetes.
Wellcome Open Research,
5, 175-175.
Abstract:
All thresholds of maternal hyperglycaemia from the WHO 2013 criteria for gestational diabetes identify women with a higher genetic risk for type 2 diabetes
Background: Using genetic scores for fasting plasma glucose (FPG GS) and type 2 diabetes (T2D GS), we investigated whether the fasting, 1-hour and 2-hour glucose thresholds from the WHO 2013 criteria for gestational diabetes (GDM) have different implications for genetic susceptibility to raised fasting glucose and type 2 diabetes in women from the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) and Atlantic Diabetes in Pregnancy (DIP) studies. Methods: Cases were divided into three subgroups: (i) FPG ≥5.1 mmol/L only, n=222; (ii) 1-hour glucose post 75 g oral glucose load ≥10 mmol/L only, n=154 (iii) 2-hour glucose ≥8.5 mmol/L only, n=73; and (iv) both FPG ≥5.1 mmol/L and either of a 1-hour glucose ≥10 mmol/L or 2-hour glucose ≥8.5 mmol/L, n=172. We compared the FPG and T2D GS of these groups with controls (n=3,091) in HAPO and DIP separately. Results: in HAPO and DIP, the mean FPG GS in women with a FPG ≥5.1 mmol/L, either on its own or with 1-hour glucose ≥10 mmol/L or 2-hour glucose ≥8.5 mmol/L, was higher than controls (all P <0.01). Mean T2D GS in women with a raised FPG alone or with either a raised 1-hour or 2-hour glucose was higher than controls (all P <0.05). GDM defined by 1-hour or 2-hour hyperglycaemia only was also associated with a higher T2D GS than controls (all P <0.05). Conclusions: the different diagnostic categories that are part of the WHO 2013 criteria for GDM identify women with a genetic predisposition to type 2 diabetes as well as a risk for adverse pregnancy outcomes.
Abstract.
Hughes AE, Hayes MG, Egan AM, Patel KA, Scholtens DM, Lowe LP, Lowe WL, Dunne FP, Hattersley AT, Freathy RM, et al (2020). All thresholds of maternal hyperglycaemia from the WHO 2013 criteria for gestational diabetes identify women with a higher genetic risk for type 2 diabetes.
Wellcome Open Res,
5Abstract:
All thresholds of maternal hyperglycaemia from the WHO 2013 criteria for gestational diabetes identify women with a higher genetic risk for type 2 diabetes.
Background: Using genetic scores for fasting plasma glucose (FPG GS) and type 2 diabetes (T2D GS), we investigated whether the fasting, 1-hour and 2-hour glucose thresholds from the WHO 2013 criteria for gestational diabetes (GDM) have different implications for genetic susceptibility to raised fasting glucose and type 2 diabetes in women from the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) and Atlantic Diabetes in Pregnancy (DIP) studies. Methods: Cases were divided into three subgroups: (i) FPG ≥5.1 mmol/L only, n=222; (ii) 1-hour glucose post 75 g oral glucose load ≥10 mmol/L only, n=154 (iii) 2-hour glucose ≥8.5 mmol/L only, n=73; and (iv) both FPG ≥5.1 mmol/L and either of a 1-hour glucose ≥10 mmol/L or 2-hour glucose ≥8.5 mmol/L, n=172. We compared the FPG and T2D GS of these groups with controls (n=3,091) in HAPO and DIP separately. Results: in HAPO and DIP, the mean FPG GS in women with a FPG ≥5.1 mmol/L, either on its own or with 1-hour glucose ≥10 mmol/L or 2-hour glucose ≥8.5 mmol/L, was higher than controls (all P
Abstract.
Author URL.
Dennis JM, Mateen BA, Sonabend R, Thomas NJ, Patel KA, Hattersley AT, Denaxas S, McGovern AP, Vollmer SJ (2020). Diabetes and COVID-19 Related Mortality in the Critical Care Setting: a Real-Time National Cohort Study in England.
Ellard S, Colclough K, Patel KA, Hattersley AT (2020). Prediction algorithms: pitfalls in interpreting genetic variants of autosomal dominant monogenic diabetes.
J Clin Invest,
130(1), 14-16.
Author URL.
Leete P, Oram RA, McDonald TJ, Shields BM, Ziller C, TIGI study team, Hattersley AT, Richardson SJ, Morgan NG (2020). Studies of insulin and proinsulin in pancreas and serum support the existence of aetiopathological endotypes of type 1 diabetes associated with age at diagnosis.
Diabetologia,
63(6), 1258-1267.
Abstract:
Studies of insulin and proinsulin in pancreas and serum support the existence of aetiopathological endotypes of type 1 diabetes associated with age at diagnosis.
AIMS/HYPOTHESIS: it is unclear whether type 1 diabetes is a single disease or if endotypes exist. Our aim was to use a unique collection of pancreas samples recovered soon after disease onset to resolve this issue. METHODS: Immunohistological analysis was used to determine the distribution of proinsulin and insulin in the islets of pancreas samples recovered soon after type 1 diabetes onset (
Abstract.
Author URL.
Novak A, Bowman P, Kraljevic I, Tripolski M, Houghton JAL, De Franco E, Shepherd MH, Skrabic V, Patel KA (2020). Transient Neonatal Diabetes: an Etiologic Clue for the Adult Diabetologist.
Can J Diabetes,
44(2), 128-130.
Author URL.
Johnson MB, Patel KA, De Franco E, Hagopian W, Killian M, McDonald TJ, Tree TIM, Domingo-Vila C, Hudson M, Hammersley S, et al (2020). Type 1 diabetes can present before the age of 6 months and is characterised by autoimmunity and rapid loss of beta cells.
Diabetologia,
63(12), 2605-2615.
Abstract:
Type 1 diabetes can present before the age of 6 months and is characterised by autoimmunity and rapid loss of beta cells.
AIMS/HYPOTHESIS: Diabetes diagnosed at
Abstract.
Author URL.
Harrison JW, Tallapragada DSP, Baptist A, Sharp SA, Bhaskar S, Jog KS, Patel KA, Weedon MN, Chandak GR, Yajnik CS, et al (2020). Type 1 diabetes genetic risk score is discriminative of diabetes in non-Europeans: evidence from a study in India.
Sci Rep,
10(1).
Abstract:
Type 1 diabetes genetic risk score is discriminative of diabetes in non-Europeans: evidence from a study in India.
Type 1 diabetes (T1D) is a significant problem in Indians and misclassification of T1D and type 2 diabetes (T2D) is a particular problem in young adults in this population due to the high prevalence of early onset T2D at lower BMI. We have previously shown a genetic risk score (GRS) can be used to discriminate T1D from T2D in Europeans. We aimed to test the ability of a T1D GRS to discriminate T1D from T2D and controls in Indians. We studied subjects from Pune, India of Indo-European ancestry; T1D (n = 262 clinically defined, 200 autoantibody positive), T2D (n = 345) and controls (n = 324). We used the 9 SNP T1D GRS generated in Europeans and assessed its ability to discriminate T1D from T2D and controls in Indians. We compared Indians with Europeans from the Wellcome Trust Case Control Consortium study; T1D (n = 1963), T2D (n = 1924) and controls (n = 2938). The T1D GRS was discriminative of T1D from T2D in Indians but slightly less than in Europeans (ROC AUC 0.84 v 0.87, p
Abstract.
Author URL.
De Franco E, Lytrivi M, Ibrahim H, Montaser H, Wakeling MN, Fantuzzi F, Patel K, Demarez C, Cai Y, Igoillo-Esteve M, et al (2020). YIPF5 mutations cause neonatal diabetes and microcephaly through endoplasmic reticulum stress.
J Clin Invest,
130(12), 6338-6353.
Abstract:
YIPF5 mutations cause neonatal diabetes and microcephaly through endoplasmic reticulum stress.
Neonatal diabetes is caused by single gene mutations reducing pancreatic β cell number or impairing β cell function. Understanding the genetic basis of rare diabetes subtypes highlights fundamental biological processes in β cells. We identified 6 patients from 5 families with homozygous mutations in the YIPF5 gene, which is involved in trafficking between the endoplasmic reticulum (ER) and the Golgi. All patients had neonatal/early-onset diabetes, severe microcephaly, and epilepsy. YIPF5 is expressed during human brain development, in adult brain and pancreatic islets. We used 3 human β cell models (YIPF5 silencing in EndoC-βH1 cells, YIPF5 knockout and mutation knockin in embryonic stem cells, and patient-derived induced pluripotent stem cells) to investigate the mechanism through which YIPF5 loss of function affects β cells. Loss of YIPF5 function in stem cell-derived islet cells resulted in proinsulin retention in the ER, marked ER stress, and β cell failure. Partial YIPF5 silencing in EndoC-βH1 cells and a patient mutation in stem cells increased the β cell sensitivity to ER stress-induced apoptosis. We report recessive YIPF5 mutations as the genetic cause of a congenital syndrome of microcephaly, epilepsy, and neonatal/early-onset diabetes, highlighting a critical role of YIPF5 in β cells and neurons. We believe this is the first report of mutations disrupting the ER-to-Golgi trafficking, resulting in diabetes.
Abstract.
Author URL.
2019
Wright CF, West B, Tuke M, Jones SE, Patel K, Laver TW, Beaumont RN, Tyrrell J, Wood AR, Frayling TM, et al (2019). Assessing the Pathogenicity, Penetrance, and Expressivity of Putative Disease-Causing Variants in a Population Setting.
Am J Hum Genet,
104(2), 275-286.
Abstract:
Assessing the Pathogenicity, Penetrance, and Expressivity of Putative Disease-Causing Variants in a Population Setting.
More than 100,000 genetic variants are classified as disease causing in public databases. However, the true penetrance of many of these rare alleles is uncertain and might be over-estimated by clinical ascertainment. Here, we use data from 379,768 UK Biobank (UKB) participants of European ancestry to assess the pathogenicity and penetrance of putatively clinically important rare variants. Although rare variants are harder to genotype accurately than common variants, we were able to classify as high quality 1,244 of 4,585 (27%) putatively clinically relevant rare (MAF < 1%) variants genotyped on the UKB microarray. We defined as "clinically relevant" variants that were classified as either pathogenic or likely pathogenic in ClinVar or are in genes known to cause two specific monogenic diseases: maturity-onset diabetes of the young (MODY) and severe developmental disorders (DDs). We assessed the penetrance and pathogenicity of these high-quality variants by testing their association with 401 clinically relevant traits. 27 of the variants were associated with a UKB trait, and we were able to refine the penetrance estimate for some of the variants. For example, the HNF4A c.340C>T (p.Arg114Trp) (GenBank: NM_175914.4) variant associated with diabetes is T (p.Arg799Trp) variant that causes Xeroderma pigmentosum were more susceptible to sunburn. Finally, we refute the previous disease association of RNF135 in developmental disorders. In conclusion, this study shows that very large population-based studies will help refine our understanding of the pathogenicity of rare genetic variants.
Abstract.
Author URL.
Bowman P, McDonald TJ, Knight BA, Flanagan SE, Leveridge M, Spaull SR, Shields BM, Hammersley S, Shepherd MH, Andrews RC, et al (2019). Patterns of postmeal insulin secretion in individuals with sulfonylurea-treated KCNJ11 neonatal diabetes show predominance of non-KATP-channel pathways.
BMJ Open Diabetes Res Care,
7(1).
Abstract:
Patterns of postmeal insulin secretion in individuals with sulfonylurea-treated KCNJ11 neonatal diabetes show predominance of non-KATP-channel pathways.
OBJECTIVE: Insulin secretion in sulfonylurea-treated KCNJ11 permanent neonatal diabetes mellitus (PNDM) is thought to be mediated predominantly through amplifying non-KATP-channel pathways such as incretins. Affected individuals report symptoms of postprandial hypoglycemia after eating protein/fat-rich foods. We aimed to assess the physiological response to carbohydrate and protein/fat in people with sulfonylurea-treated KCNJ11 PNDM. RESEARCH DESIGN AND METHODS: 5 adults with sulfonylurea-treated KCNJ11 PNDM and five age, sex and body mass index-matched controls without diabetes had a high-carbohydrate and high-protein/fat meal on two separate mornings. Insulin(i) and glucose(g) were measured at baseline then regularly over 4 hours after the meal. Total area under the curve (tAUC) for insulin and glucose was calculated over 4 hours and compared between meals in controls and KCNJ11 cases. RESULTS: in controls, glucose values after carbohydrate and protein/fat were similar (median glucose tAUC0-4h21.4 vs 19.7 mmol/L, p=0.08). In KCNJ11 cases glucose levels were higher after carbohydrate than after protein/fat (median glucose tAUC0-4h58.1 vs 31.3 mmol/L, p=0.04). These different glycemic responses reflected different patterns of insulin secretion: in controls, insulin secretion was greatly increased after carbohydrate versus protein/fat (median insulin tAUC0-4h727 vs 335 pmol/L, p=0.04), but in KCNJ11 cases insulin secretion was similar after carbohydrate and protein/fat (median insulin tAUC0-4h327 vs 378 pmol/L, p=0.50). CONCLUSIONS: Individuals with sulfonylurea-treated KCNJ11 PNDM produce similar levels of insulin in response to both carbohydrate and protein/fat meals despite carbohydrate resulting in much higher glucose levels and protein/fat resulting in relatively low glucose levels. This suggests in an inability to modulate insulin secretion in response to glucose levels, consistent with a dependence on non-KATP pathways for insulin secretion. TRIAL REGISTRATION NUMBER: NCT02921906.
Abstract.
Author URL.
Laver TW, De Franco E, Johnson MB, Patel K, Ellard S, Weedon MN, Flanagan SE, Wakeling MN (2019). SavvyCNV: genome-wide CNV calling from off-target reads.
BioRxivAbstract:
SavvyCNV: genome-wide CNV calling from off-target reads
AbstractIdentifying copy number variants (CNVS) can provide diagnoses to patients and provide important biological insights into human health and disease. Current exome and targeted sequencing approaches cannot detect clinically and biologically-relevant CNVs outside their target area. We present SavvyCNV, a tool which uses off-target read data to call CNVs genome-wide. Up to 70% of sequencing reads from exome and targeted sequencing fall outside the targeted regions - SavvyCNV exploits this ‘free data’.We benchmarked SavvyCNV using truth sets generated from genome sequencing data and Multiplex Ligation-dependent Probe Amplification assays. SavvyCNV called CNVs with high precision and recall, outperforming five state-of-the-art CNV callers at calling CNVs genome-wide using off-target or on-target reads from targeted panel and exome sequencing. Furthermore SavvyCNV was able to call previously undetected clinically-relevant CNVs from targeted panel data highlighting the utility of this tool within the diagnostic setting. SavvyCNV is freely available.
Abstract.
Johnson MB, De Franco E, Greeley SAW, Letourneau LR, Gillespie KM, International DS-PNDM Consortium, Wakeling MN, Ellard S, Flanagan SE, Patel KA, et al (2019). Trisomy 21 is a Cause of Permanent Neonatal Diabetes That is Autoimmune but Not HLA Associated.
Diabetes,
68(7), 1528-1535.
Abstract:
Trisomy 21 is a Cause of Permanent Neonatal Diabetes That is Autoimmune but Not HLA Associated.
Identifying new causes of permanent neonatal diabetes (PNDM) (diagnosis
Abstract.
Author URL.
Yaghootkar H, Abbasi F, Ghaemi N, Rabbani A, Wakeling MN, Eshraghi P, Enayati S, Vakili S, Heidari S, Patel K, et al (2019). Type 1 diabetes genetic risk score discriminates between monogenic and Type 1 diabetes in children diagnosed at the age of <5 years in the Iranian population.
Diabet Med,
36(12), 1694-1702.
Abstract:
Type 1 diabetes genetic risk score discriminates between monogenic and Type 1 diabetes in children diagnosed at the age of <5 years in the Iranian population.
AIM: to examine the extent to which discriminatory testing using antibodies and Type 1 diabetes genetic risk score, validated in European populations, is applicable in a non-European population. METHODS: We recruited 127 unrelated children with diabetes diagnosed between 9 months and 5 years from two centres in Iran. All children underwent targeted next-generation sequencing of 35 monogenic diabetes genes. We measured three islet autoantibodies (islet antigen 2, glutamic acid decarboxylase and zinc transporter 8) and generated a Type 1 diabetes genetic risk score in all children. RESULTS: We identified six children with monogenic diabetes, including four novel mutations: homozygous mutations in WFS1 (n=3), SLC19A2 and SLC29A3, and a heterozygous mutation in GCK. All clinical features were similar in children with monogenic diabetes (n=6) and in the rest of the cohort (n=121). The Type 1 diabetes genetic risk score discriminated children with monogenic from Type 1 diabetes [area under the receiver-operating characteristic curve 0.90 (95% CI 0.83-0.97)]. All children with monogenic diabetes were autoantibody-negative. In children with no mutation, 59 were positive to glutamic acid decarboxylase, 39 to islet antigen 2 and 31 to zinc transporter 8. Measuring zinc transporter 8 increased the number of autoantibody-positive individuals by eight. CONCLUSIONS: the present study provides the first evidence that Type 1 diabetes genetic risk score can be used to distinguish monogenic from Type 1 diabetes in an Iranian population with a large number of consanguineous unions. This test can be used to identify children with a higher probability of having monogenic diabetes who could then undergo genetic testing. Identification of these individuals would reduce the cost of treatment and improve the management of their clinical course.
Abstract.
Author URL.
Patel KA, Knight B, Aziz A, Babiker T, Tamar A, Findlay J, Cox S, Dimitropoulos I, Tysoe C, Panicker V, et al (2019). Utility of systematic TSHR gene testing in adults with hyperthyroidism lacking overt autoimmunity and diffuse uptake on thyroid scintigraphy.
Clin Endocrinol (Oxf),
90(2), 328-333.
Abstract:
Utility of systematic TSHR gene testing in adults with hyperthyroidism lacking overt autoimmunity and diffuse uptake on thyroid scintigraphy.
OBJECTIVE: Patients with hyperthyroidism lacking autoimmune features but showing diffuse uptake on thyroid scintigram can have either Graves' disease or germline activating TSH receptor (TSHR) mutation. It is important to identify patients with activating TSHR mutation due to treatment implication, but the overlapping clinical features with Graves' disease make it difficult to discriminate these two conditions without genetic testing. Our study aimed to assess the potential of systematic TSHR mutation screening in adults with hyperthyroidism, showing diffuse uptake on thyroid scintigraphy but absence of TSH receptor antibodies (TRAb) and clinical signs of autoimmunity. DESIGN: a cross-sectional study of Caucasian adults with hyperthyroidism, managed at three endocrine centres in the South West, UK, from January 2006 to April 2017. METHODS: We recruited 78 adult Caucasian patients with hyperthyroidism showing diffuse uptake on 99m Tc-pertechnetate thyroid scintigraphy but without TRAb and other autoimmune clinical features of Graves' disease (such as thyroid-associated ophthalmopathy or dermopathy). Genomic DNA of these patients was analysed for variants in the TSHR gene. RESULTS: Genetic analysis identified 11 patients with four variants in TSHR [p.(Glu34Lys), p.(Asp36His), p.(Pro52Thr) and p.(Ile334Thr)]. None of these variants were pathogenic according to the American College of Medical Genetics and Genomics guideline. CONCLUSIONS: Activating TSHR mutations are a rare cause of nonautoimmune adult hyperthyroidism. Our study does not support the routine genetic testing in adult patients with hyperthyroidism showing diffuse uptake on scintigraphy but negative TRAb and lacking extrathyroidal manifestations of Graves' disease.
Abstract.
Author URL.
Patel KA, Weedon MN, Shields BM, Pearson ER, Hattersley AT, McDonald TJ, UNITED study team (2019). Zinc Transporter 8 Autoantibodies (ZnT8A) and a Type 1 Diabetes Genetic Risk Score can Exclude Individuals with Type 1 Diabetes from Inappropriate Genetic Testing for Monogenic Diabetes.
Diabetes Care,
42(2), e16-e17.
Author URL.
2018
Shepherd MH, Shields BM, Hudson M, Pearson ER, Hyde C, Ellard S, Hattersley AT, Patel KA, UNITED study (2018). A UK nationwide prospective study of treatment change in MODY: genetic subtype and clinical characteristics predict optimal glycaemic control after discontinuing insulin and metformin.
Diabetologia,
61(12), 2520-2527.
Abstract:
A UK nationwide prospective study of treatment change in MODY: genetic subtype and clinical characteristics predict optimal glycaemic control after discontinuing insulin and metformin.
AIMS/HYPOTHESIS: Treatment change following a genetic diagnosis of MODY is frequently indicated, but little is known about the factors predicting future treatment success. We therefore conducted the first prospective study to determine the impact of a genetic diagnosis on individuals with GCK-, HNF1A- or HNF4A-MODY in the UK, and to identify clinical characteristics predicting treatment success (i.e. HbA1c ≤58 mmol/mol [≤7.5%]) with the recommended treatment at 2 years. METHODS: This was an observational, prospective, non-selective study of individuals referred to the Exeter Molecular Genetic Laboratory for genetic testing from December 2010 to December 2012. Individuals from the UK with GCK- or HNF1A/HNF4A-MODY who were not on recommended treatment at the time of genetic diagnosis, and who were diagnosed below the age of 30 years and were currently aged less than 50 years, were eligible to participate. RESULTS: a total of 44 of 58 individuals (75.9%) changed treatment following their genetic diagnosis. Eight individuals diagnosed with GCK-MODY stopped all diabetes medication without experiencing any change in HbA1c (49.5 mmol/mol [6.6%] both before the genetic diagnosis and at a median of 1.25 years' follow-up without treatment, p = 0.88). A total of 36 of 49 individuals (73.5%) diagnosed with HNF1A/HNF4A-MODY changed treatment; however, of the 21 of these individuals who were being managed with diet or sulfonylurea alone at 2 years, only 13 (36.1% of the population that changed treatment) had an HbA1c ≤58 mmol/mol (≤7.5%). These individuals had a shorter diabetes duration (median 4.6 vs 18.1 years), lower HbA1c (58 vs 73 mmol/mol [7.5% vs 8.8%]) and lower BMI (median 24.2 vs 26.0 kg/m2) at the time of genetic diagnosis, compared with individuals (n = 23/36) with an HbA1c >58 mmol/mol (>7.5%) (or 69 mmol/mol (>8.5%) at the time of genetic diagnosis. CONCLUSIONS/INTERPRETATION: in participants with GCK-MODY, treatment cessation was universally successful, with no change in HbA1c at follow-up. In those with HNF1A/HNF4A-MODY, a shorter diabetes duration, lower HbA1c and lower BMI at genetic diagnosis predicted successful treatment with sulfonylurea/diet alone, supporting the need for early genetic diagnosis and treatment change. Our study suggests that, in individuals with HNF1A/HNF4A-MODY with a longer duration of diabetes (>11 years) at time of genetic test, rather than ceasing current treatment, a sulfonylurea should be added to existing therapy, particularly in those who are overweight or obese and have a high HbA1c.
Abstract.
Author URL.
Johnson MB, Patel KA, De Franco E, Houghton JAL, McDonald TJ, Ellard S, Flanagan SE, Hattersley AT (2018). A type 1 diabetes genetic risk score can discriminate monogenic autoimmunity with diabetes from early-onset clustering of polygenic autoimmunity with diabetes.
Diabetologia,
61(4), 862-869.
Abstract:
A type 1 diabetes genetic risk score can discriminate monogenic autoimmunity with diabetes from early-onset clustering of polygenic autoimmunity with diabetes.
AIMS/HYPOTHESIS: Identifying individuals suitable for monogenic autoimmunity testing and gene discovery studies is challenging: early-onset type 1 diabetes mellitus can cluster with additional autoimmune diseases due to shared polygenic risk and islet- and other organ-specific autoantibodies are present in both monogenic and polygenic aetiologies. We aimed to assess whether a type 1 diabetes genetic risk score (GRS) could identify monogenic autoimmune diabetes and be useful to prioritise individuals for gene discovery studies. METHODS: We studied 79 individuals with diabetes and at least one additional autoimmune disease diagnosed before the age of 5 years. We screened all participants for the seven genes known to cause monogenic autoimmunity that can include diabetes (AIRE, IL2RA, FOXP3, LRBA, STAT1, STAT3, STAT5B). We genotyped the top ten risk alleles for type 1 diabetes, including HLA and non-HLA loci, to generate a type 1 diabetes GRS. RESULTS: of the 79 individuals studied, 37 (47%) had mutations in the monogenic autoimmunity genes. The type 1 diabetes GRS was lower in these individuals than in those without mutations in these genes (median 9th vs 49th centile of type 1 diabetes controls, p
Abstract.
Author URL.
Bowman P, Sulen Å, Barbetti F, Beltrand J, Svalastoga P, Codner E, Tessmann EH, Juliusson PB, Skrivarhaug T, Pearson ER, et al (2018). Effectiveness and safety of long-term treatment with sulfonylureas in patients with neonatal diabetes due to KCNJ11 mutations: an international cohort study.
Lancet Diabetes Endocrinol,
6(8), 637-646.
Abstract:
Effectiveness and safety of long-term treatment with sulfonylureas in patients with neonatal diabetes due to KCNJ11 mutations: an international cohort study.
BACKGROUND: KCNJ11 mutations cause permanent neonatal diabetes through pancreatic ATP-sensitive potassium channel activation. 90% of patients successfully transfer from insulin to oral sulfonylureas with excellent initial glycaemic control; however, whether this control is maintained in the long term is unclear. Sulfonylurea failure is seen in about 44% of people with type 2 diabetes after 5 years of treatment. Therefore, we did a 10-year multicentre follow-up study of a large international cohort of patients with KCNJ11 permanent neonatal diabetes to address the key questions relating to long-term efficacy and safety of sulfonylureas in these patients. METHODS: in this multicentre, international cohort study, all patients diagnosed with KCNJ11 permanent neonatal diabetes at five laboratories in Exeter (UK), Rome (Italy), Bergen (Norway), Paris (France), and Krakow (Poland), who transferred from insulin to oral sulfonylureas before Nov 30, 2006, were eligible for inclusion. Clinicians collected clinical characteristics and annual data relating to glycaemic control, sulfonylurea dose, severe hypoglycaemia, side-effects, diabetes complications, and growth. The main outcomes of interest were sulfonylurea failure, defined as permanent reintroduction of daily insulin, and metabolic control, specifically HbA1c and sulfonylurea dose. Neurological features associated with KCNJ11 permanent neonatal diabetes were also assessed. This study is registered with ClinicalTrials.gov, number NCT02624817. FINDINGS: 90 patients were identified as being eligible for inclusion and 81 were enrolled in the study and provided long-term (>5·5 years cut-off) outcome data. Median follow-up duration for the whole cohort was 10·2 years (IQR 9·3-10·8). At most recent follow-up (between Dec 1, 2012, and Oct 4, 2016), 75 (93%) of 81 participants remained on sulfonylurea therapy alone. Excellent glycaemic control was maintained for patients for whom we had paired data on HbA1c and sulfonylurea at all time points (ie, pre-transfer [for HbA1c], year 1, and most recent follow-up; n=64)-median HbA1c was 8·1% (IQR 7·2-9·2; 65·0 mmol/mol [55·2-77·1]) before transfer to sulfonylureas, 5·9% (5·4-6·5; 41·0 mmol/mol [35·5-47·5]; p
Abstract.
Author URL.
Cameron AR, Logie L, Patel K, Erhardt S, Bacon S, Middleton P, Harthill J, Forteath C, Coats JT, Kerr C, et al (2018). Metformin selectively targets redox control of complex I energy transduction.
Redox Biol,
14, 187-197.
Abstract:
Metformin selectively targets redox control of complex I energy transduction.
Many guanide-containing drugs are antihyperglycaemic but most exhibit toxicity, to the extent that only the biguanide metformin has enjoyed sustained clinical use. Here, we have isolated unique mitochondrial redox control properties of metformin that are likely to account for this difference. In primary hepatocytes and H4IIE hepatoma cells we found that antihyperglycaemic diguanides DG5-DG10 and the biguanide phenformin were up to 1000-fold more potent than metformin on cell signalling responses, gluconeogenic promoter expression and hepatocyte glucose production. Each drug inhibited cellular oxygen consumption similarly but there were marked differences in other respects. All diguanides and phenformin but not metformin inhibited NADH oxidation in submitochondrial particles, indicative of complex I inhibition, which also corresponded closely with dehydrogenase activity in living cells measured by WST-1. Consistent with these findings, in isolated mitochondria, DG8 but not metformin caused the NADH/NAD+ couple to become more reduced over time and mitochondrial deterioration ensued, suggesting direct inhibition of complex I and mitochondrial toxicity of DG8. In contrast, metformin exerted a selective oxidation of the mitochondrial NADH/NAD+ couple, without triggering mitochondrial deterioration. Together, our results suggest that metformin suppresses energy transduction by selectively inducing a state in complex I where redox and proton transfer domains are no longer efficiently coupled.
Abstract.
Author URL.
Laver TW, Patel KA, Colclough K, Curran J, Dale J, Davis N, Savage DB, Flanagan SE, Ellard S, Hattersley AT, et al (2018). PLIN1 Haploinsufficiency is Not Associated with Lipodystrophy.
J Clin Endocrinol Metab,
103(9), 3225-3230.
Abstract:
PLIN1 Haploinsufficiency is Not Associated with Lipodystrophy.
CONTEXT: Monogenic partial lipodystrophy is a genetically heterogeneous disease where only variants with specific genetic mechanisms are causative. Three heterozygous protein extending frameshift variants in PLIN1 have been reported to cause a phenotype of partial lipodystrophy and insulin resistance. OBJECTIVE: We investigated if null variants in PLIN1 cause lipodystrophy. METHODS: As part of a targeted sequencing panel test, we sequenced PLIN1 in 2208 individuals. We also investigated the frequency of PLIN1 variants in the gnomAD database, and the type 2 diabetes knowledge portal. RESULTS: We identified 6/2208 (1 in 368) individuals with a PLIN1 null variant. None of these individuals had clinical or biochemical evidence of overt lipodystrophy. Additionally, 14/17,000 (1 in 1214) individuals with PLIN1 null variants in the type 2 diabetes knowledge portal showed no association with biomarkers of lipodystrophy. PLIN1 null variants occur too frequently in gnomAD (126/138,632; 1 in 1100) to be a cause of rare overt monogenic partial lipodystrophy. CONCLUSIONS: Our study suggests that heterozygous variants that are predicted to result in PLIN1 haploinsufficiency are not a cause of familial partial lipodystrophy and should not be reported as disease-causing variants by diagnostic genetic testing laboratories. This finding is in keeping with other known monogenic causes of lipodystrophy, such as PPARG and LMNA, where only variants with specific genetic mechanisms cause lipodystrophy.
Abstract.
Author URL.
Locke JM, Saint-Martin C, Laver TW, Patel KA, Wood AR, Sharp SA, Ellard S, Bellanné-Chantelot C, Hattersley AT, Harries LW, et al (2018). The Common HNF1A Variant I27L is a Modifier of Age at Diabetes Diagnosis in Individuals with HNF1A-MODY.
Diabetes,
67(9), 1903-1907.
Abstract:
The Common HNF1A Variant I27L is a Modifier of Age at Diabetes Diagnosis in Individuals with HNF1A-MODY.
There is wide variation in the age at diagnosis of diabetes in individuals with maturity-onset diabetes of the young (MODY) due to a mutation in the HNF1A gene. We hypothesized that common variants at the HNF1A locus (rs1169288 [I27L], rs1800574 [A98V]), which are associated with type 2 diabetes susceptibility, may modify age at diabetes diagnosis in individuals with HNF1A-MODY. Meta-analysis of two independent cohorts, comprising 781 individuals with HNF1A-MODY, found no significant associations between genotype and age at diagnosis. However after stratifying according to type of mutation (protein-truncating variant [PTV] or missense), we found each 27L allele to be associated with a 1.6-year decrease (95% CI -2.6, -0.7) in age at diagnosis, specifically in the subset (n = 444) of individuals with a PTV. The effect size was similar and significant across the two independent cohorts of individuals with HNF1A-MODY. We report a robust genetic modifier of HNF1A-MODY age at diagnosis that further illustrates the strong effect of genetic variation within HNF1A upon diabetes phenotype.
Abstract.
Author URL.
2017
Patel KA, Kettunen J, Laakso M, Stančáková A, Laver TW, Colclough K, Johnson MB, Abramowicz M, Groop L, Miettinen PJ, et al (2017). Heterozygous RFX6 protein truncating variants are associated with MODY with reduced penetrance.
Nat Commun,
8(1).
Abstract:
Heterozygous RFX6 protein truncating variants are associated with MODY with reduced penetrance.
Finding new causes of monogenic diabetes helps understand glycaemic regulation in humans. To find novel genetic causes of maturity-onset diabetes of the young (MODY), we sequenced MODY cases with unknown aetiology and compared variant frequencies to large public databases. From 36 European patients, we identify two probands with novel RFX6 heterozygous nonsense variants. RFX6 protein truncating variants are enriched in the MODY discovery cohort compared to the European control population within ExAC (odds ratio = 131, P = 1 × 10-4). We find similar results in non-Finnish European (n = 348, odds ratio = 43, P = 5 × 10-5) and Finnish (n = 80, odds ratio = 22, P = 1 × 10-6) replication cohorts. RFX6 heterozygotes have reduced penetrance of diabetes compared to common HNF1A and HNF4A-MODY mutations (27, 70 and 55% at 25 years of age, respectively). The hyperglycaemia results from beta-cell dysfunction and is associated with lower fasting and stimulated gastric inhibitory polypeptide (GIP) levels. Our study demonstrates that heterozygous RFX6 protein truncating variants are associated with MODY with reduced penetrance.Maturity-onset diabetes of the young (MODY) is the most common subtype of familial diabetes. Here, Patel et al. use targeted DNA sequencing of MODY patients and large-scale publically available data to show that RFX6 heterozygous protein truncating variants cause reduced penetrance MODY.
Abstract.
Author URL.
Day JO, Flanagan SE, Shepherd MH, Patrick AW, Abid N, Torrens L, Zeman AJ, Patel KA, Hattersley AT (2017). Hyperglycaemia-related complications at the time of diagnosis can cause permanent neurological disability in children with neonatal diabetes.
Diabet Med,
34(7), 1000-1004.
Abstract:
Hyperglycaemia-related complications at the time of diagnosis can cause permanent neurological disability in children with neonatal diabetes.
BACKGROUND: Children with neonatal diabetes often present with diabetic ketoacidosis and hence are at risk of cerebral oedema and subsequent long-term neurological deficits. These complications are difficult to identify because neurological features can also occur as a result of the specific genetic aetiology causing neonatal diabetes. CASE REPORTS: We report two cases of neonatal diabetes where ketoacidosis-related cerebral oedema was the major cause of their permanent neurological disability. Case 1 (male, 18 years, compound heterozygous ABCC8 mutation) and case 2 (female, 29 years, heterozygous KCNJ11 mutation) presented with severe diabetic ketoacidosis at 6 and 16 weeks of age. Both had reduced consciousness, seizures and required intensive care for cerebral oedema. They subsequently developed spastic tetraplegia. Neurological examination in adulthood confirmed spastic tetraplegia and severe disability. Case 1 is wheelchair-bound and needs assistance for transfers, washing and dressing, whereas case 2 requires institutional care for all activities of daily living. Both cases have first-degree relatives with the same mutation with diabetes, who did not have ketoacidosis at diagnosis and do not have neurological disability. DISCUSSION: Ketoacidosis-related cerebral oedema at diagnosis in neonatal diabetes can cause long-term severe neurological disability. This will give additional neurological features to those directly caused by the genetic aetiology of the neonatal diabetes. Our cases highlight the need for increased awareness of neonatal diabetes and earlier and better initial treatment of the severe hyperglycaemia and ketoacidosis often seen at diagnosis of these children.
Abstract.
Author URL.
Patel KA, Warren R, Brooke A, Aziz A, Avades T, Poyner R, Vaidya B (2017). Interpretation of thyroid scintigraphy is inconsistent among endocrinologists.
J Endocrinol Invest,
40(10), 1155-1157.
Author URL.
Hattersley AT, Patel KA (2017). Precision diabetes: learning from monogenic diabetes.
Diabetologia,
60(5), 769-777.
Abstract:
Precision diabetes: learning from monogenic diabetes.
The precision medicine approach of tailoring treatment to the individual characteristics of each patient or subgroup has been a great success in monogenic diabetes subtypes, MODY and neonatal diabetes. This review examines what has led to the success of a precision medicine approach in monogenic diabetes (precision diabetes) and outlines possible implications for type 2 diabetes. For monogenic diabetes, the molecular genetics can define discrete aetiological subtypes that have profound implications on diabetes treatment and can predict future development of associated clinical features, allowing early preventative or supportive treatment. In contrast, type 2 diabetes has overlapping polygenic susceptibility and underlying aetiologies, making it difficult to define discrete clinical subtypes with a dramatic implication for treatment. The implementation of precision medicine in neonatal diabetes was simple and rapid as it was based on single clinical criteria (diagnosed
Abstract.
Author URL.
2016
Oram RA, Patel K, Hill A, Shields B, McDonald TJ, Jones A, Hattersley AT, Weedon MN (2016). A Type 1 Diabetes Genetic Risk Score can Aid Discrimination Between Type 1 and Type 2 Diabetes in Young Adults.
Diabetes Care,
39(3), 337-344.
Abstract:
A Type 1 Diabetes Genetic Risk Score can Aid Discrimination Between Type 1 and Type 2 Diabetes in Young Adults.
OBJECTIVE: with rising obesity, it is becoming increasingly difficult to distinguish between type 1 diabetes (T1D) and type 2 diabetes (T2D) in young adults. There has been substantial recent progress in identifying the contribution of common genetic variants to T1D and T2D. We aimed to determine whether a score generated from common genetic variants could be used to discriminate between T1D and T2D and also to predict severe insulin deficiency in young adults with diabetes. RESEARCH DESIGN AND METHODS: We developed genetic risk scores (GRSs) from published T1D- and T2D-associated variants. We first tested whether the scores could distinguish clinically defined T1D and T2D from the Wellcome Trust Case Control Consortium (WTCCC) (n = 3,887). We then assessed whether the T1D GRS correctly classified young adults (diagnosed at 20-40 years of age, the age-group with the most diagnostic difficulty in clinical practice; n = 223) who progressed to severe insulin deficiency 0.280 (>50th centile in those with T1D) is indicative of T1D (50% sensitivity, 95% specificity). A low T1D GRS (
Abstract.
Author URL.
Fendler W, Madzio J, Kozinski K, Patel K, Janikiewicz J, Szopa M, Tracz A, Borowiec M, Jarosz-Chobot P, Mysliwiec M, et al (2016). Differential regulation of serum microRNA expression by HNF1β and HNF1α transcription factors.
Diabetologia,
59(7), 1463-1473.
Abstract:
Differential regulation of serum microRNA expression by HNF1β and HNF1α transcription factors.
AIMS/HYPOTHESIS: We aimed to identify microRNAs (miRNAs) under transcriptional control of the HNF1β transcription factor, and investigate whether its effect manifests in serum. METHODS: the Polish cohort (N = 60) consisted of 11 patients with HNF1B-MODY, 17 with HNF1A-MODY, 13 with GCK-MODY, an HbA1c-matched type 1 diabetic group (n = 9) and ten healthy controls. Replication was performed in 61 clinically-matched British patients mirroring the groups in the Polish cohort. The Polish cohort underwent miRNA serum level profiling with quantitative real-time PCR (qPCR) arrays to identify differentially expressed miRNAs. Validation was performed using qPCR. To determine whether serum content reflects alterations at a cellular level, we quantified miRNA levels in a human hepatocyte cell line (HepG2) with small interfering RNA knockdowns of HNF1α or HNF1β. RESULTS: Significant differences (adjusted p
Abstract.
Author URL.
Cameron AR, Logie L, Patel K, Bacon S, Forteath C, Harthill J, Roberts A, Sutherland C, Stewart D, Viollet B, et al (2016). Investigation of salicylate hepatic responses in comparison with chemical analogues of the drug.
Biochim Biophys Acta,
1862(8), 1412-1422.
Abstract:
Investigation of salicylate hepatic responses in comparison with chemical analogues of the drug.
Anti-hyperglycaemic effects of the hydroxybenzoic acid salicylate might stem from effects of the drug on mitochondrial uncoupling, activation of AMP-activated protein kinase, and inhibition of NF-κB signalling. Here, we have gauged the contribution of these effects to control of hepatocyte glucose production, comparing salicylate with inactive hydroxybenzoic acid analogues of the drug. In rat H4IIE hepatoma cells, salicylate was the only drug tested that activated AMPK. Salicylate also reduced mTOR signalling, but this property was observed widely among the analogues. In a sub-panel of analogues, salicylate alone reduced promoter activity of the key gluconeogenic enzyme glucose 6-phosphatase and suppressed basal glucose production in mouse primary hepatocytes. Both salicylate and 2,6 dihydroxybenzoic acid suppressed TNFα-induced IκB degradation, and in genetic knockout experiments, we found that the effect of salicylate on IκB degradation was AMPK-independent. Previous data also identified AMPK-independent regulation of glucose but we found that direct inhibition of neither NF-κB nor mTOR signalling suppressed glucose production, suggesting that other factors besides these cell signalling pathways may need to be considered to account for this response to salicylate. We found, for example, that H4IIE cells were exquisitely sensitive to uncoupling with modest doses of salicylate, which occurred on a similar time course to another anti-hyperglycaemic uncoupling agent 2,4-dinitrophenol, while there was no discernible effect at all of two salicylate analogues which are not anti-hyperglycaemic. This finding supports much earlier literature suggesting that salicylates exert anti-hyperglycaemic effects at least in part through uncoupling.
Abstract.
Author URL.
Majithia AR, Tsuda B, Agostini M, Gnanapradeepan K, Rice R, Peloso G, Patel KA, Zhang X, Broekema MF, Patterson N, et al (2016). Prospective functional classification of all possible missense variants in PPARG.
Nat Genet,
48(12), 1570-1575.
Abstract:
Prospective functional classification of all possible missense variants in PPARG.
Clinical exome sequencing routinely identifies missense variants in disease-related genes, but functional characterization is rarely undertaken, leading to diagnostic uncertainty. For example, mutations in PPARG cause Mendelian lipodystrophy and increase risk of type 2 diabetes (T2D). Although approximately 1 in 500 people harbor missense variants in PPARG, most are of unknown consequence. To prospectively characterize PPARγ variants, we used highly parallel oligonucleotide synthesis to construct a library encoding all 9,595 possible single-amino acid substitutions. We developed a pooled functional assay in human macrophages, experimentally evaluated all protein variants, and used the experimental data to train a variant classifier by supervised machine learning. When applied to 55 new missense variants identified in population-based and clinical sequencing, the classifier annotated 6 variants as pathogenic; these were subsequently validated by single-variant assays. Saturation mutagenesis and prospective experimental characterization can support immediate diagnostic interpretation of newly discovered missense variants in disease-related genes.
Abstract.
Author URL.
Babiker T, Vedovato N, Patel K, Thomas N, Finn R, Männikkö R, Chakera AJ, Flanagan SE, Shepherd MH, Ellard S, et al (2016). Successful transfer to sulfonylureas in KCNJ11 neonatal diabetes is determined by the mutation and duration of diabetes.
Diabetologia,
59(6), 1162-1166.
Abstract:
Successful transfer to sulfonylureas in KCNJ11 neonatal diabetes is determined by the mutation and duration of diabetes.
AIMS/HYPOTHESIS: the finding that patients with diabetes due to potassium channel mutations can transfer from insulin to sulfonylureas has revolutionised the management of patients with permanent neonatal diabetes. The extent to which the in vitro characteristics of the mutation can predict a successful transfer is not known. Our aim was to identify factors associated with successful transfer from insulin to sulfonylureas in patients with permanent neonatal diabetes due to mutations in KCNJ11 (which encodes the inwardly rectifying potassium channel Kir6.2). METHODS: We retrospectively analysed clinical data on 127 patients with neonatal diabetes due to KCNJ11 mutations who attempted to transfer to sulfonylureas. We considered transfer successful when patients completely discontinued insulin whilst on sulfonylureas. All unsuccessful transfers received ≥0.8 mg kg(-1) day(-1) glibenclamide (or the equivalent) for >4 weeks. The in vitro response of mutant Kir6.2/SUR1 channels to tolbutamide was assessed in Xenopus oocytes. For some specific mutations, not all individuals carrying the mutation were able to transfer successfully; we therefore investigated which clinical features could predict a successful transfer. RESULTS: in all, 112 out of 127 (88%) patients successfully transferred to sulfonylureas from insulin with an improvement in HbA1c from 8.2% (66 mmol/mol) on insulin, to 5.9% (41 mmol/mol) on sulphonylureas (p = 0.001). The in vitro response of the mutation to tolbutamide determined the likelihood of transfer: the extent of tolbutamide block was 73% did transfer successfully. The few patients with these mutations who could not transfer had a longer duration of diabetes than those who transferred successfully (18.2 vs 3.4 years, p = 0.032). There was no difference in pre-transfer HbA1c (p = 0.87), weight-for-age z scores (SD score; p = 0.12) or sex (p = 0.17). CONCLUSIONS/INTERPRETATION: Transfer from insulin is successful for most KCNJ11 patients and is best predicted by the in vitro response of the specific mutation and the duration of diabetes. Knowledge of the specific mutation and of diabetes duration can help predict whether successful transfer to sulfonylureas is likely. This result supports the early genetic testing and early treatment of patients with neonatal diabetes aged under 6 months.
Abstract.
Author URL.
Laver TW, Colclough K, Shepherd M, Patel K, Houghton JAL, Dusatkova P, Pruhova S, Morris AD, Palmer CN, McCarthy MI, et al (2016). The Common p.R114W HNF4A Mutation Causes a Distinct Clinical Subtype of Monogenic Diabetes.
Diabetes,
65(10), 3212-3217.
Abstract:
The Common p.R114W HNF4A Mutation Causes a Distinct Clinical Subtype of Monogenic Diabetes.
HNF4A mutations cause increased birth weight, transient neonatal hypoglycemia, and maturity onset diabetes of the young (MODY). The most frequently reported HNF4A mutation is p.R114W (previously p.R127W), but functional studies have shown inconsistent results; there is a lack of cosegregation in some pedigrees and an unexpectedly high frequency in public variant databases. We confirm that p.R114W is a pathogenic mutation with an odds ratio of 30.4 (95% CI 9.79-125, P = 2 × 10(-21)) for diabetes in our MODY cohort compared with control subjects. p.R114W heterozygotes did not have the increased birth weight of patients with other HNF4A mutations (3,476 g vs. 4,147 g, P = 0.0004), and fewer patients responded to sulfonylurea treatment (48% vs. 73%, P = 0.038). p.R114W has reduced penetrance; only 54% of heterozygotes developed diabetes by age 30 years compared with 71% for other HNF4A mutations. We redefine p.R114W as a pathogenic mutation that causes a distinct clinical subtype of HNF4A MODY with reduced penetrance, reduced sensitivity to sulfonylurea treatment, and no effect on birth weight. This has implications for diabetes treatment, management of pregnancy, and predictive testing of at-risk relatives. The increasing availability of large-scale sequence data is likely to reveal similar examples of rare, low-penetrance MODY mutations.
Abstract.
Author URL.
Patel KA, Oram RA, Flanagan SE, De Franco E, Colclough K, Shepherd M, Ellard S, Weedon MN, Hattersley AT (2016). Type 1 Diabetes Genetic Risk Score: a Novel Tool to Discriminate Monogenic and Type 1 Diabetes.
Diabetes,
65(7), 2094-2099.
Abstract:
Type 1 Diabetes Genetic Risk Score: a Novel Tool to Discriminate Monogenic and Type 1 Diabetes.
Distinguishing patients with monogenic diabetes from those with type 1 diabetes (T1D) is important for correct diagnosis, treatment, and selection of patients for gene discovery studies. We assessed whether a T1D genetic risk score (T1D-GRS) generated from T1D-associated common genetic variants provides a novel way to discriminate monogenic diabetes from T1D. The T1D-GRS was highly discriminative of proven maturity-onset diabetes of young (MODY) (n = 805) and T1D (n = 1,963) (receiver operating characteristic area under the curve 0.87). A T1D-GRS of >0.280 (>50th T1D centile) was indicative of T1D (94% specificity, 50% sensitivity). We then analyzed the T1D-GRS of 242 white European patients with neonatal diabetes (NDM) who had been tested for all known NDM genes. Monogenic NDM was confirmed in 90, 59, and 8% of patients with GRS 75th T1D centile, respectively. Applying a GRS 50th T1D centile cutoff in 48 NDM patients with no known genetic cause identified those most likely to have a novel monogenic etiology by highlighting patients with probable early-onset T1D (GRS >50th T1D centile) who were diagnosed later and had less syndromic presentation but additional autoimmune features compared with those with proven monogenic NDM. The T1D-GRS is a novel tool to improve the use of biomarkers in the discrimination of monogenic diabetes from T1D.
Abstract.
Author URL.
2014
Patel K, Foretz M, Marion A, Campbell DG, Gourlay R, Boudaba N, Tournier E, Titchenell P, Peggie M, Deak M, et al (2014). The LKB1-salt-inducible kinase pathway functions as a key gluconeogenic suppressor in the liver.
Nat Commun,
5Abstract:
The LKB1-salt-inducible kinase pathway functions as a key gluconeogenic suppressor in the liver.
LKB1 is a master kinase that regulates metabolism and growth through adenosine monophosphate-activated protein kinase (AMPK) and 12 other closely related kinases. Liver-specific ablation of LKB1 causes increased glucose production in hepatocytes in vitro and hyperglycaemia in fasting mice in vivo. Here we report that the salt-inducible kinases (SIK1, 2 and 3), members of the AMPK-related kinase family, play a key role as gluconeogenic suppressors downstream of LKB1 in the liver. The selective SIK inhibitor HG-9-91-01 promotes dephosphorylation of transcriptional co-activators CRTC2/3 resulting in enhanced gluconeogenic gene expression and glucose production in hepatocytes, an effect that is abolished when an HG-9-91-01-insensitive mutant SIK is introduced or LKB1 is ablated. Although SIK2 was proposed as a key regulator of insulin-mediated suppression of gluconeogenesis, we provide genetic evidence that liver-specific ablation of SIK2 alone has no effect on gluconeogenesis and insulin does not modulate SIK2 phosphorylation or activity. Collectively, we demonstrate that the LKB1-SIK pathway functions as a key gluconeogenic gatekeeper in the liver.
Abstract.
Author URL.
2013
von Wilamowitz-Moellendorff A, Hunter RW, García-Rocha M, Kang L, López-Soldado I, Lantier L, Patel K, Peggie MW, Martínez-Pons C, Voss M, et al (2013). Glucose-6-phosphate-mediated activation of liver glycogen synthase plays a key role in hepatic glycogen synthesis.
Diabetes,
62(12), 4070-4082.
Abstract:
Glucose-6-phosphate-mediated activation of liver glycogen synthase plays a key role in hepatic glycogen synthesis.
The liver responds to an increase in blood glucose levels in the postprandial state by uptake of glucose and conversion to glycogen. Liver glycogen synthase (GYS2), a key enzyme in glycogen synthesis, is controlled by a complex interplay between the allosteric activator glucose-6-phosphate (G6P) and reversible phosphorylation through glycogen synthase kinase-3 and the glycogen-associated form of protein phosphatase 1. Here, we initially performed mutagenesis analysis and identified a key residue (Arg(582)) required for activation of GYS2 by G6P. We then used GYS2 Arg(582)Ala knockin (+/R582A) mice in which G6P-mediated GYS2 activation had been profoundly impaired (60-70%), while sparing regulation through reversible phosphorylation. R582A mutant-expressing hepatocytes showed significantly reduced glycogen synthesis with glucose and insulin or glucokinase activator, which resulted in channeling glucose/G6P toward glycolysis and lipid synthesis. GYS2(+/R582A) mice were modestly glucose intolerant and displayed significantly reduced glycogen accumulation with feeding or glucose load in vivo. These data show that G6P-mediated activation of GYS2 plays a key role in controlling glycogen synthesis and hepatic glucose-G6P flux control and thus whole-body glucose homeostasis.
Abstract.
Author URL.
2012
Logie L, Harthill J, Patel K, Bacon S, Hamilton DL, Macrae K, McDougall G, Wang H-H, Xue L, Jiang H, et al (2012). Cellular responses to the metal-binding properties of metformin.
Diabetes,
61(6), 1423-1433.
Abstract:
Cellular responses to the metal-binding properties of metformin.
In recent decades, the antihyperglycemic biguanide metformin has been used extensively in the treatment of type 2 diabetes, despite continuing uncertainty over its direct target. In this article, using two independent approaches, we demonstrate that cellular actions of metformin are disrupted by interference with its metal-binding properties, which have been known for over a century but little studied by biologists. We demonstrate that copper sequestration opposes known actions of metformin not only on AMP-activated protein kinase (AMPK)-dependent signaling, but also on S6 protein phosphorylation. Biguanide/metal interactions are stabilized by extensive π-electron delocalization and by investigating analogs of metformin; we provide evidence that this intrinsic property enables biguanides to regulate AMPK, glucose production, gluconeogenic gene expression, mitochondrial respiration, and mitochondrial copper binding. In contrast, regulation of S6 phosphorylation is prevented only by direct modification of the metal-liganding groups of the biguanide structure, supporting recent data that AMPK and S6 phosphorylation are regulated independently by biguanides. Additional studies with pioglitazone suggest that mitochondrial copper is targeted by both of these clinically important drugs. Together, these results suggest that cellular effects of biguanides depend on their metal-binding properties. This link may illuminate a better understanding of the molecular mechanisms enabling antihyperglycemic drug action.
Abstract.
Author URL.
Henriksson E, Jones HA, Patel K, Peggie M, Morrice N, Sakamoto K, Göransson O (2012). The AMPK-related kinase SIK2 is regulated by cAMP via phosphorylation at Ser358 in adipocytes.
Biochem J,
444(3), 503-514.
Abstract:
The AMPK-related kinase SIK2 is regulated by cAMP via phosphorylation at Ser358 in adipocytes.
SIK2 (salt-inducible kinase 2) is a member of the AMPK (AMP-activated protein kinase) family of kinases and is highly expressed in adipocytes. We investigated the regulation of SIK2 in adipocytes in response to cellular stimuli with relevance for adipocyte function and/or AMPK signalling. None of the treatments, including insulin, cAMP inducers or AICAR (5-amino-4-imidazolecarboxamide riboside), affected SIK2 activity towards peptide or protein substrates in vitro. However, stimulation with the cAMP-elevating agent forskolin and the β-adrenergic receptor agonist CL 316,243 resulted in a PKA (protein kinase A)-dependent phosphorylation and 14-3-3 binding of SIK2. Phosphopeptide mapping of SIK2 revealed several sites phosphorylated in response to cAMP induction, including Ser(358). Site-directed mutagenesis demonstrated that phosphorylation of Ser(358), but not the previously reported PKA site Ser(587), was required for 14-3-3 binding. Immunocytochemistry illustrated that the localization of exogenously expressed SIK2 in HEK (human embryonic kidney)-293 cells was exclusively cytosolic and remained unchanged after cAMP elevation. Fractionation of adipocytes, however, revealed a significant increase of wild-type, but not Ser358Ala, HA (haemagglutinin)-SIK2 in the cytosol and a concomitant decrease in a particulate fraction after CL 316,243 treatment. This supports a phosphorylation-dependent relocalization in adipocytes. We hypothesize that regulation of SIK2 by cAMP could play a role for the critical effects of this second messenger on lipid metabolism in adipocytes.
Abstract.
Author URL.
2011
Gajjar K, Patel K, Rao CA (2011). Thyroid disease in pregnancy. The Obstetrician & Gynaecologist, 11(2), 150-151.