Publications by year
2013
Perry JRB, Corre T, Esko T, Chasman DI, Fischer K, Franceschini N, He C, Kutalik Z, Mangino M, Rose LM, et al (2013). A genome-wide association study of early menopause and the combined impact of identified variants.
Hum Mol Genet,
22(7), 1465-1472.
Abstract:
A genome-wide association study of early menopause and the combined impact of identified variants.
Early menopause (EM) affects up to 10% of the female population, reducing reproductive lifespan considerably. Currently, it constitutes the leading cause of infertility in the western world, affecting mainly those women who postpone their first pregnancy beyond the age of 30 years. The genetic aetiology of EM is largely unknown in the majority of cases. We have undertaken a meta-analysis of genome-wide association studies (GWASs) in 3493 EM cases and 13 598 controls from 10 independent studies. No novel genetic variants were discovered, but the 17 variants previously associated with normal age at natural menopause as a quantitative trait (QT) were also associated with EM and primary ovarian insufficiency (POI). Thus, EM has a genetic aetiology which overlaps variation in normal age at menopause and is at least partly explained by the additive effects of the same polygenic variants. The combined effect of the common variants captured by the single nucleotide polymorphism arrays was estimated to account for ∼30% of the variance in EM. The association between the combined 17 variants and the risk of EM was greater than the best validated non-genetic risk factor, smoking.
Abstract.
Author URL.
Full text.
2012
Manning AK, Hivert MF, Scott RA, Grimsby JL, Bouatia-Naji N, Chen H, Rybin D, Liu CT, Bielak LF, Prokopenko I, et al (2012). A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance.
Nature Genetics,
44(6), 659-669.
Abstract:
A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance
Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and β-cell dysfunction but have contributed little to the understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways might be uncovered by accounting for differences in body mass index (BMI) and potential interactions between BMI and genetic variants. We applied a joint meta-analysis approach to test associations with fasting insulin and glucose on a genome-wide scale. We present six previously unknown loci associated with fasting insulin at P < 5 × 10. in combined discovery and follow-up analyses of 52 studies comprising up to 96,496 non-diabetic individuals. Risk variants were associated with higher triglyceride and lower high-density lipoprotein (HDL) cholesterol levels, suggesting a role for these loci in insulin resistance pathways. The discovery of these loci will aid further characterization of the role of insulin resistance in T2D pathophysiology. © 2012 Nature America, Inc. All rights reserved. -8
Abstract.
Coviello AD, Haring R, Wellons M, Vaidya D, Lehtimäki T, Keildson S, Lunetta KL, He C, Fornage M, Lagou V, et al (2012). A genome-wide association meta-analysis of circulating sex hormone-binding globulin reveals multiple loci implicated in sex steroid hormone regulation.
PLoS Genetics,
8(7).
Abstract:
A genome-wide association meta-analysis of circulating sex hormone-binding globulin reveals multiple loci implicated in sex steroid hormone regulation
Sex hormone-binding globulin (SHBG) is a glycoprotein responsible for the transport and biologic availability of sex steroid hormones, primarily testosterone and estradiol. SHBG has been associated with chronic diseases including type 2 diabetes (T2D) and with hormone-sensitive cancers such as breast and prostate cancer. We performed a genome-wide association study (GWAS) meta-analysis of 21,791 individuals from 10 epidemiologic studies and validated these findings in 7,046 individuals in an additional six studies. We identified twelve genomic regions (SNPs) associated with circulating SHBG concentrations. Loci near the identified SNPs included SHBG (rs12150660, 17p13.1, p = 1.8×10 ), PRMT6 (rs17496332, 1p13.3, p = 1.4×10 ), GCKR (rs780093, 2p23.3, p = 2.2×10 ), ZBTB10 (rs440837, 8q21.13, p = 3.4×10 ), JMJD1C (rs7910927, 10q21.3, p = 6.1×10 ), SLCO1B1 (rs4149056, 12p12.1, p = 1.9×10 ), NR2F2 (rs8023580, 15q26.2, p = 8.3×10 ), ZNF652 (rs2411984, 17q21.32, p = 3.5×10 ), TDGF3 (rs1573036, Xq22.3, p = 4.1×10 ), LHCGR (rs10454142, 2p16.3, p = 1.3×10 ), BAIAP2L1 (rs3779195, 7q21.3, p = 2.7×10 ), and UGT2B15 (rs293428, 4q13.2, p = 5.5×10 ). These genes encompass multiple biologic pathways, including hepatic function, lipid metabolism, carbohydrate metabolism and T2D, androgen and estrogen receptor function, epigenetic effects, and the biology of sex steroid hormone-responsive cancers including breast and prostate cancer. We found evidence of sex-differentiated genetic influences on SHBG. In a sex-specific GWAS, the loci 4q13.2-UGT2B15 was significant in men only (men p = 2.5×10 , women p = 0.66, heterogeneity p = 0.003). Additionally, three loci showed strong sex-differentiated effects: 17p13.1-SHBG and Xq22.3-TDGF3 were stronger in men, whereas 8q21.12-ZBTB10 was stronger in women. Conditional analyses identified additional signals at the SHBG gene that together almost double the proportion of variance explained at the locus. Using an independent study of 1,129 individuals, all SNPs identified in the overall or sex-differentiated or conditional analyses explained ~15.6% and ~8.4% of the genetic variation of SHBG concentrations in men and women, respectively. The evidence for sex-differentiated effects and allelic heterogeneity highlight the importance of considering these features when estimating complex trait variance. -106 -11 -16 -09 -35 -08 -12 -14 -14 -07 -08 -06 -08
Abstract.
Full text.
Franceschini N, van Rooij FJA, Prins BP, Feitosa MF, Karakas M, Eckfeldt JH, Folsom AR, Kopp J, Vaez A, Andrews JS, et al (2012). Discovery and Fine Mapping of Serum Protein Loci through Transethnic Meta-analysis.
AMERICAN JOURNAL OF HUMAN GENETICS,
91(4), 744-753.
Author URL.
Franceschini N, van Rooij FA, Prins B, Feitosa M, Karakas M, Eckfeldt J, Folsom A, Kopp J, Vaez A, Andrews J, et al (2012). Discovery and Fine Mapping of Serum Protein Loci through Transethnic Meta-analysis. American Journal of Human Genetics
Boraska V, Day-Williams A, Franklin CS, Elliott KS, Panoutsopoulou K, Tachmazidou I, Albrecht E, Bandinelli S, Beilin LJ, Bochud M, et al (2012). Genome-wide association study to identify common variants associated with brachial circumference: a meta-analysis of 14 cohorts.
PLoS ONE,
7(3).
Abstract:
Genome-wide association study to identify common variants associated with brachial circumference: a meta-analysis of 14 cohorts
Brachial circumference (BC), also known as upper arm or mid arm circumference, can be used as an indicator of muscle mass and fat tissue, which are distributed differently in men and women. Analysis of anthropometric measures of peripheral fat distribution such as BC could help in understanding the complex pathophysiology behind overweight and obesity. The purpose of this study is to identify genetic variants associated with BC through a large-scale genome-wide association scan (GWAS) meta-analysis. We used fixed-effects meta-analysis to synthesise summary results across 14 GWAS discovery and 4 replication cohorts comprising overall 22,376 individuals (12,031 women and 10,345 men) of European ancestry. Individual analyses were carried out for men, women, and combined across sexes using linear regression and an additive genetic model: adjusted for age and adjusted for age and BMI. We prioritised signals for follow-up in two-stages. We did not detect any signals reaching genome-wide significance. The FTO rs9939609 SNP showed nominal evidence for association (p
Abstract.
Boraska V, Jerončić A, Colonna V, Southam L, Nyholt DR, William rayner N, Perry JRB, Toniolo D, Albrecht E, Ang W, et al (2012). Genome-wide meta-analysis of common variant differences between men and women.
Human Molecular Genetics,
21(21), 4805-4815.
Abstract:
Genome-wide meta-analysis of common variant differences between men and women
The male-to-female sex ratio at birth is constant across world populations with an average of 1.06 (106 male to 100 female live births) for populations of European descent. The sex ratio is considered to be affected by numerous biological and environmental factors and to have a heritable component. The aim of this study was to investigate the presence of common allele modest effects at autosomal and chromosome X variants that could explain the observed sex ratio at birth. We conducted a large-scale genome-wide association scan (GWAS) meta-analysis across 51 studies, comprising overall 114 863 individuals (61 094 women and 53 769 men) of European ancestry and 2 623 828 common (minor allele frequency >0.05) single-nucleotide polymorphisms (SNPs). Allele frequencies were compared between men and women for directly-typed and imputed variants within each study. Forward-time simulations for unlinked, neutral, autosomal, common loci were performed under the demographic model for European populations with a fixed sex ratio and a random mating scheme to assess the probability of detecting significant allele frequency differences. We do not detect any genome-wide significant (P < 5 × 10 ) common SNP differences between men and women in this well-powered meta-analysis. The simulated data provided results entirely consistent with these findings. This large-scale investigation across ~115 000 individuals shows no detectable contribution from common genetic variants to the observed skew in the sex ratio. The absence of sex-specific differences is useful in guiding genetic association study design, for example when using mixed controls for sex-biased traits. © the Author 2012. Published by Oxford University Press. -8
Abstract.
Morris AP, Voight BF, Teslovich TM, Ferreira T, Segrè AV, Steinthorsdottir V, Strawbridge RJ, Khan H, Grallert H, Mahajan A, et al (2012). Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes.
Nature Genetics,
44(9), 981-990.
Abstract:
Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes
To extend understanding of the genetic architecture and molecular basis of type 2 diabetes (T2D), we conducted a meta-analysis of genetic variants on the Metabochip, including 34,840 cases and 114,981 controls, overwhelmingly of European descent. We identified ten previously unreported T2D susceptibility loci, including two showing sex-differentiated association. Genome-wide analyses of these data are consistent with a long tail of additional common variant loci explaining much of the variation in susceptibility to T2D. Exploration of the enlarged set of susceptibility loci implicates several processes, including CREBBP-related transcription, adipocytokine signaling and cell cycle regulation, in diabetes pathogenesis. © 2012 Nature America, Inc. All rights reserved.
Abstract.
Marquez M, Huyvaert M, Perry JRB, Pearson RD, Falchi M, Morris AP, Vivequin S, Lobbens S, Yengo L, Gaget S, et al (2012). Low-frequency variants in HMGA1 are not associated with type 2 diabetes risk.
Diabetes,
61(2), 524-530.
Abstract:
Low-frequency variants in HMGA1 are not associated with type 2 diabetes risk
It has recently been suggested that the low-frequency c.136-14-136-13insC variant in high-mobility group A1 (HMGA1) may strongly contribute to insulin resistance and type 2 diabetes risk. In our study, we attempted to confirm that HMGA1 is a novel type 2 diabetes locus in French Caucasians. The gene was sequenced in 368 type 2 diabetic case subjects with a family history of type 2 diabetes and 372 normoglycemic control subjects without a family history of type 2 diabetes. None of the 41 genetic variations identified were associated with type 2 diabetes. The lack of association between the c.136-14-136-13insC variant and type 2 diabetes was confirmed in an independent French group of 4,538 case subjects and 4,015 control subjects and in a large meta-analysis of 16,605 case subjects and 46,179 control subjects. Finally, this variant had no effects on metabolic traits and was not involved in variations of HMGA1 and insulin receptor (INSR) expressions. The c.136-14-136-13insC variant was not associated with type 2 diabetes in individuals of European descent. Our study emphasizes the need to analyze a large number of subjects to reliably assess the association of low-frequency variants with the disease. © 2012 by the American Diabetes Association.
Abstract.
Stolk L, Perry JRB, Chasman DI, He C, Mangino M, Sulem P, Barbalic M, Broer L, Byrne EM, Ernst F, et al (2012). Meta-analyses identify 13 loci associated with age at menopause and highlight DNA repair and immune pathways.
Nature Genetics,
44(3), 260-268.
Abstract:
Meta-analyses identify 13 loci associated with age at menopause and highlight DNA repair and immune pathways
To newly identify loci for age at natural menopause, we carried out a meta-analysis of 22 genome-wide association studies (GWAS) in 38,968 women of European descent, with replication in up to 14,435 women. In addition to four known loci, we identified 13 loci newly associated with age at natural menopause (at P < 5 - 10 g8). Candidate genes located at these newly associated loci include genes implicated in DNA repair (EXO1, HELQ, UIMC1, FAM175A, FANCI, TLK1, POLG and PRIM1) and immune function (IL11, NLRP11 and PRRC2A (also known as BAT2)). Gene-set enrichment pathway analyses using the full GWAS data set identified exoDNase, NF-I °B signaling and mitochondrial dysfunction as biological processes related to timing of menopause. © 2012 Nature America, Inc. All rights reserved.
Abstract.
Full text.
Dastani Z, Hivert MF, Timpson N, Perry JRB, Yuan X, Scott RA, Henneman P, Heid IM, Kizer JR, Lyytikäinen LP, et al (2012). Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits: a multi-ethnic meta-analysis of 45,891 individuals.
PLoS Genetics,
8(3).
Abstract:
Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits: a multi-ethnic meta-analysis of 45,891 individuals
Circulating levels of adiponectin, a hormone produced predominantly by adipocytes, are highly heritable and are inversely associated with type 2 diabetes mellitus (T2D) and other metabolic traits. We conducted a meta-analysis of genome-wide association studies in 39,883 individuals of European ancestry to identify genes associated with metabolic disease. We identified 8 novel loci associated with adiponectin levels and confirmed 2 previously reported loci (P = 4.5×10 - 1.2 ×10 ). Using a novel method to combine data across ethnicities (N = 4,232 African Americans, N = 1,776 Asians, and N = 29,347 Europeans), we identified two additional novel loci. Expression analyses of 436 human adipocyte samples revealed that mRNA levels of 18 genes at candidate regions were associated with adiponectin concentrations after accounting for multiple testing (p
Abstract.
Perry JRB, Voight BF, Yengo L, Amin N, Dupuis J, Ganser M, Grallert H, Navarro P, Li M, Qi L, et al (2012). Stratifying type 2 diabetes cases by BMI identifies genetic risk variants in LAMA1 and enrichment for risk variants in lean compared to obese cases.
PLoS Genet,
8(5).
Abstract:
Stratifying type 2 diabetes cases by BMI identifies genetic risk variants in LAMA1 and enrichment for risk variants in lean compared to obese cases.
Common diseases such as type 2 diabetes are phenotypically heterogeneous. Obesity is a major risk factor for type 2 diabetes, but patients vary appreciably in body mass index. We hypothesized that the genetic predisposition to the disease may be different in lean (BMI
Abstract.
Author URL.
Full text.
2011
Christmas J, Keedwell E, Frayling T, Perry J (2011). Ant Colony Optimisation to identify Genetic Disease Association for Type 2 Diabetes. Information Sciences, 181(9), 1609-1622.
Murray A, Bennett CE, Perry JRB, Weedon MN, Jacobs PA, Morris DH, Orr N, Schoemaker MJ, Jones M, Ashworth A, et al (2011). Common genetic variants are significant risk factors for early menopause: results from the Breakthrough Generations Study.
Hum Mol Genet,
20(1), 186-192.
Abstract:
Common genetic variants are significant risk factors for early menopause: results from the Breakthrough Generations Study.
Women become infertile approximately 10 years before menopause, and as more women delay childbirth into their 30s, the number of women who experience infertility is likely to increase. Tests that predict the timing of menopause would allow women to make informed reproductive decisions. Current predictors are only effective just prior to menopause, and there are no long-range indicators. Age at menopause and early menopause (EM) are highly heritable, suggesting a genetic aetiology. Recent genome-wide scans have identified four loci associated with variation in the age of normal menopause (40-60 years). We aimed to determine whether theses loci are also risk factors for EM. We tested the four menopause-associated genetic variants in a cohort of approximately 2000 women with menopause≤45 years from the Breakthrough Generations Study (BGS). All four variants significantly increased the odds of having EM. Comparing the 4.5% of individuals with the lowest number of risk alleles (two or three) with the 3.0% with the highest number (eight risk alleles), the odds ratio was 4.1 (95% CI 2.4-7.1, P=4.0×10(-7)). In combination, the four variants discriminated EM cases with a receiver operator characteristic area under the curve of 0.6. Four common genetic variants identified by genome-wide association studies, had a significant impact on the odds of having EM in an independent cohort from the BGS. The discriminative power is still limited, but as more variants are discovered they may be useful for predicting reproductive lifespan.
Abstract.
Author URL.
Full text.
Zhai G, Teumer A, Stolk L, Perry JRB, Vandenput L, Coviello AD, Koster A, Bandinelli S, Bell JT, Bhasin S, et al (2011). EIGHT COMMON GENETIC VARIANTS ASSOCIATED WITH SERUM DHEAS LEVELS SUGGESTS a KEY ROLE IN AGEING MECHANISMS.
CLINICAL CHEMISTRY AND LABORATORY MEDICINE,
49, S425-S425.
Author URL.
Zhai G, Teumer A, Stolk L, Perry JRB, Vandenput L, Coviello AD, Koster A, Bell JT, Bhasin S, Eriksson J, et al (2011). Eight common genetic variants associated with serum dheas levels suggest a key role in ageing mechanisms.
PLoS Genetics,
7(4).
Abstract:
Eight common genetic variants associated with serum dheas levels suggest a key role in ageing mechanisms
Dehydroepiandrosterone sulphate (DHEAS) is the most abundant circulating steroid secreted by adrenal glands-yet its function is unknown. Its serum concentration declines significantly with increasing age, which has led to speculation that a relative DHEAS deficiency may contribute to the development of common age-related diseases or diminished longevity. We conducted a meta-analysis of genome-wide association data with 14,846 individuals and identified eight independent common SNPs associated with serum DHEAS concentrations. Genes at or near the identified loci include ZKSCAN5 (rs11761528; p = 3.15×10 ), SULT2A1 (rs2637125; p = 2.61×10 ), ARPC1A (rs740160; p = 1.56×10 ), TRIM4 (rs17277546; p = 4.50×10 ), BMF (rs7181230; p = 5.44×10 ), HHEX (rs2497306; p = 4.64×10 ), BCL2L11 (rs6738028; p = 1.72×10 ), and CYP2C9 (rs2185570; p = 2.29×10 ). These genes are associated with type 2 diabetes, lymphoma, actin filament assembly, drug and xenobiotic metabolism, and zinc finger proteins. Several SNPs were associated with changes in gene expression levels, and the related genes are connected to biological pathways linking DHEAS with ageing. This study provides much needed insight into the function of DHEAS. -36 -19 -16 -11 -11 -9 -8 -8
Abstract.
Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, Zeggini E, Huth C, Aulchenko YS, Thorleifsson G, et al (2011). Erratum: Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nature Genetics, 43(4).
Ohlsson C, Wallaschofski H, Lunetta KL, Stolk L, Perry JRB, Koster A, Petersen A-K, Eriksson J, Lehtimaki T, Huhtaniemi IT, et al (2011). Genetic Determinants of Serum Testosterone Concentrations in Men.
PLOS GENETICS,
7(10).
Author URL.
Full text.
Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, Zeggini E, Huth C, Aulchenko YS, Thorleifsson G, et al (2011). Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis (vol 42, pg 579, 2010).
NATURE GENETICS,
43(4), 388-388.
Author URL.
2010
Harries LW, Perry JRB, McCullagh P, Crundwell M (2010). Alterations in LMTK2, MSMB and HNF1B gene expression are associated with the development of prostate cancer.
BMC Cancer,
10Abstract:
Alterations in LMTK2, MSMB and HNF1B gene expression are associated with the development of prostate cancer.
BACKGROUND: Genome wide association studies (GWAS) have identified several genetic variants that are associated with prostate cancer. Most of these variants, like other GWAS association signals, are located in non-coding regions of potential candidate genes, and thus could act at the level of the mRNA transcript. METHODS: We measured the expression and isoform usage of seven prostate cancer candidate genes in benign and malignant prostate by real-time PCR, and correlated these factors with cancer status and genotype at the GWAS risk variants. RESULTS: We determined that levels of LMTK2 transcripts in prostate adenocarcinomas were only 32% of those in benign tissues (p = 3.2 x 10(-7)), and that an independent effect of genotype at variant rs6465657 on LMTK2 expression in benign (n = 39) and malignant tissues (n = 21) was also evident (P = 0.002). We also identified that whilst HNF1B(C) and MSMB2 comprised the predominant isoforms in benign tissues (90% and 98% of total HNF1B or MSMB expression), HNF1B(B) and MSMB1 were predominant in malignant tissue (95% and 96% of total HNF1B or MSMB expression; P = 1.7 x 10(-7) and 4 x 10(-4) respectively), indicating major shifts in isoform usage. CONCLUSIONS: Our results indicate that the amount or nature of mRNA transcripts expressed from the LMTK2, HNF1B and MSMB candidate genes is altered in prostate cancer, and provides further evidence for a role for these genes in this disorder. The alterations in isoform usage we detect highlights the potential importance of alternative mRNA processing and moderation of mRNA stability as potentially important disease mechanisms.
Abstract.
Author URL.
Full text.
Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, Allen HL, Lindgren CM, Luan J, Mägi R, et al (2010). Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index.
Nature Genetics,
42(11), 937-948.
Abstract:
Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index
Obesity is globaLy prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined aSociations betwEn body maS index and ĝ̂1/42.8 miLion SNPs in up to 123,865 individuals with targeted foLow up of 42 SNPs in up to 125,931 aDitional individuals. We confirmed 14 known obesity susceptibility loci and identified 18 new loci aSociated with body maS index (P < 5-10 ), one of which includes a copy number variant near GPRC5B. Some loci (at MC4R, POMC, SH2B1 and BDNF) map near key hypothalamic regulators of energy balance, and one of these loci is near GIPR, an incretin receptor. Furthermore, genes in other newly aSociated loci may provide new insights into human body weight regulation. © 2010 Nature America, Inc. All rights reserved. -8
Abstract.
Heid IM, Henneman P, Hicks A, Coassin S, Winkler T, Aulchenko YS, Fuchsberger C, Song K, Hivert MF, Waterworth DM, et al (2010). Clear detection of ADIPOQ locus as the major gene for plasma adiponectin: Results of genome-wide association analyses including 4659 European individuals.
Atherosclerosis,
208(2), 412-420.
Abstract:
Clear detection of ADIPOQ locus as the major gene for plasma adiponectin: Results of genome-wide association analyses including 4659 European individuals
Objective: Plasma adiponectin is strongly associated with various components of metabolic syndrome, type 2 diabetes and cardiovascular outcomes. Concentrations are highly heritable and differ between men and women. We therefore aimed to investigate the genetics of plasma adiponectin in men and women. Methods: We combined genome-wide association scans of three population-based studies including 4659 persons. For the replication stage in 13795 subjects, we selected the 20 top signals of the combined analysis, as well as the 10 top signals with p-values less than 1.0 × 10. for each the men- and the women-specific analyses. We further selected 73 SNPs that were consistently associated with metabolic syndrome parameters in previous genome-wide association studies to check for their association with plasma adiponectin. Results: the ADIPOQ locus showed genome-wide significant p-values in the combined (p = 4.3 × 10 ) as well as in both women- and men-specific analyses (p = 8.7 × 10. and p = 2.5 × 10 , respectively). None of the other 39 top signal SNPs showed evidence for association in the replication analysis. None of 73 SNPs from metabolic syndrome loci exhibited association with plasma adiponectin (p > 0.01). Conclusions: We demonstrated the ADIPOQ gene as the only major gene for plasma adiponectin, which explains 6.7% of the phenotypic variance. We further found that neither this gene nor any of the metabolic syndrome loci explained the sex differences observed for plasma adiponectin. Larger studies are needed to identify more moderate genetic determinants of plasma adiponectin. © 2009 Elsevier Ireland Ltd. -4 -24 -17 -11
Abstract.
Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, Wheeler E, Glazer NL, Bouatia-Naji N, Gloyn AL, et al (2010). Erratum: New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk (Nature Genetics (2010) 42 (105-116)). Nature Genetics, 42(5).
Perry JRB, Weedon MN, Langenberg C, Jackson AU, Lyssenko V, Sparsø T, Thorleifsson G, Grallert H, Ferrucci L, Maggio M, et al (2010). Genetic evidence that raised sex hormone binding globulin (SHBG) levels reduce the risk of type 2 diabetes.
Hum Mol Genet,
19(3), 535-544.
Abstract:
Genetic evidence that raised sex hormone binding globulin (SHBG) levels reduce the risk of type 2 diabetes.
Epidemiological studies consistently show that circulating sex hormone binding globulin (SHBG) levels are lower in type 2 diabetes patients than non-diabetic individuals, but the causal nature of this association is controversial. Genetic studies can help dissect causal directions of epidemiological associations because genotypes are much less likely to be confounded, biased or influenced by disease processes. Using this Mendelian randomization principle, we selected a common single nucleotide polymorphism (SNP) near the SHBG gene, rs1799941, that is strongly associated with SHBG levels. We used data from this SNP, or closely correlated SNPs, in 27 657 type 2 diabetes patients and 58 481 controls from 15 studies. We then used data from additional studies to estimate the difference in SHBG levels between type 2 diabetes patients and controls. The SHBG SNP rs1799941 was associated with type 2 diabetes [odds ratio (OR) 0.94, 95% CI: 0.91, 0.97; P = 2 x 10(-5)], with the SHBG raising allele associated with reduced risk of type 2 diabetes. This effect was very similar to that expected (OR 0.92, 95% CI: 0.88, 0.96), given the SHBG-SNP versus SHBG levels association (SHBG levels are 0.2 standard deviations higher per copy of the a allele) and the SHBG levels versus type 2 diabetes association (SHBG levels are 0.23 standard deviations lower in type 2 diabetic patients compared to controls). Results were very similar in men and women. There was no evidence that this variant is associated with diabetes-related intermediate traits, including several measures of insulin secretion and resistance. Our results, together with those from another recent genetic study, strengthen evidence that SHBG and sex hormones are involved in the aetiology of type 2 diabetes.
Abstract.
Author URL.
Craddock N, Hurles ME, Cardin N, Pearson RD, Plagnol V, Robson S, Vukcevic D, Barnes C, Conrad DF, Giannoulatou E, et al (2010). Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls.
Nature,
464(7289), 713-720.
Abstract:
Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls
Copy number variants (CNVs) account for a major proportion of human genetic polymorphism and have been predicted to have an important role in genetic susceptibility to common disease. To address this we undertook a large, direct genome-wide study of association between CNVs and eight common human diseases. Using a purpose-designed array we typed 19,000 individuals into distinct copy-number classes at 3,432 polymorphic CNVs, including an estimated 50% of all common CNVs larger than 500 base pairs. We identified several biological artefacts that lead to false-positive associations, including systematic CNV differences between DNAs derived from blood and cell lines. Association testing and follow-up replication analyses confirmed three loci where CNVs were associated with diseaseIRGM for Crohns disease, HLA for Crohns disease, rheumatoid arthritis and type 1 diabetes, and TSPAN8 for type 2 diabetesalthough in each case the locus had previously been identified in single nucleotide polymorphism (SNP)-based studies, reflecting our observation that most common CNVs that are well-typed on our array are well tagged by SNPs and so have been indirectly explored through SNP studies. We conclude that common CNVs that can be typed on existing platforms are unlikely to contribute greatly to the genetic basis of common human diseases. © 2010 Macmillan Publishers Limited. All rights reserved.
Abstract.
Furberg H, Kim Y, Dackor J, Boerwinkle E, Franceschini N, Ardissino D, Bernardinelli L, Mannucci PM, Mauri F, Merlini PA, et al (2010). Genome-wide meta-analyses identify multiple loci associated with smoking behavior.
Nature Genetics,
42(5), 441-447.
Abstract:
Genome-wide meta-analyses identify multiple loci associated with smoking behavior
Consistent but indirect evidence has implicated genetic factors in smoking behavior. We report meta-analyses of several smoking phenotypes within cohorts of the Tobacco and Genetics Consortium (n = 74,053). We also partnered with the European Network of Genetic and Genomic Epidemiology (ENGAGE) and Oxford-GlaxoSmithKline (Ox-GSK) consortia to follow up the 15 most significant regions (n 140,000). We identified three loci associated with number of cigarettes smoked per day. The strongest association was a synonymous 15q25 SNP in the nicotinic receptor gene CHRNA3 (rs1051730[A], Β = 1.03, standard error (s.e.) = 0.053, P = 2.8 × 10 73). Two 10q25 SNPs (rs1329650[G], Β = 0.367, s.e. = 0.059, P = 5.7 × 10 10; and rs1028936[A], Β = 0.446, s.e. = 0.074, P = 1.3 × 10 9) and one 9q13 SNP in EGLN2 (rs3733829[G], Β = 0.333, s.e. = 0.058, P = 1.0 × 10 8) also exceeded genome-wide significance for cigarettes per day. For smoking initiation, eight SNPs exceeded genome-wide significance, with the strongest association at a nonsynonymous SNP in BDNF on chromosome 11 (rs6265[C], odds ratio (OR) = 1.06, 95% confidence interval (Cl) 1.04-1.08, P = 1.8 × 10 8). One SNP located near DBH on chromosome 9 (rs3025343[G], OR = 1.12, 95% Cl 1.08-1.18, P = 3.6 × 10 8) was significantly associated with smoking cessation. © 2010 Nature America, Inc. All rights reserved.
Abstract.
Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F, Willer CJ, Jackson AU, Vedantam S, Raychaudhuri S, et al (2010). Hundreds of variants clustered in genomic loci and biological pathways affect human height.
Nature,
467(7317), 832-838.
Abstract:
Hundreds of variants clustered in genomic loci and biological pathways affect human height.
Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P
Abstract.
Author URL.
Heid IM, Jackson AU, Randall JC, Winkler TW, Qi L, Ssteinthorsdottir V, Tthorleifsson G, Zillikens C, Sspeliotes EK, Mägi R, et al (2010). Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution.
Nature Genetics,
42(11), 949-960.
Abstract:
Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution
Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9-10-9 to P = 1.8-10-40) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9-10-3 to P = 1.2-10-13). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions. © 2010 Nature America, Inc. All rights reserved.
Abstract.
Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, Wheeler E, Glazer NL, Bouatia-Naji N, Gloyn AL, et al (2010). New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk (vol 42, pg 105, 2010).
NATURE GENETICS,
42(5), 464-464.
Author URL.
Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, Wheeler E, Glazer NL, Bouatia-Naji N, Gloyn AL, et al (2010). New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.
Nat Genet,
42(2), 105-116.
Abstract:
New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.
Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes.
Abstract.
Author URL.
Elks CE, Perry JRB, Sulem P, Chasman DI, Franceschini N, He C, Lunetta KL, Visser JA, Byrne EM, Cousminer DL, et al (2010). Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies.
Nature Genetics,
42(12), 1077-1085.
Abstract:
Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies
To identify loci for age at menarche, we performed a meta-analysis of 32 genome-wide association studies in 87,802 women of European descent, with replication in up to 14,731 women. In addition to the known loci at LIN28B (P = 5.4 × 10 -60) and 9q31.2 (P = 2.2 × 10 -33), we identified 30 new menarche loci (all P < 5 × 10 -8) and found suggestive evidence for a further 10 loci (P < 1.9 × 10 -6). The new loci included four previously associated with body mass index (in or near FTO, SEC16B, TRA2B and TMEM18), three in or near other genes implicated in energy homeostasis (BSX, CRTC1 and MCHR2) and three in or near genes implicated in hormonal regulation (INHBA, PCSK2 and RXRG). Ingenuity and gene-set enrichment pathway analyses identified coenzyme a and fatty acid biosynthesis as biological processes related to menarche timing. © 2010 Nature America, Inc. All rights reserved.
Abstract.
Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, Zeggini E, Huth C, Aulchenko YS, Thorleifsson G, et al (2010). Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis.
Nature Genetics,
42(7), 579-589.
Abstract:
Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis
By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals with combined P 5 × 10 8. These include a second independent signal at the KCNQ1 locus; the first report, to our knowledge, of an X-chromosomal association (near DUSP9); and a further instance of overlap between loci implicated in monogenic and multifactorial forms of diabetes (at HNF1A). The identified loci affect both beta-cell function and insulin action, and, overall, T2D association signals show evidence of enrichment for genes involved in cell cycle regulation. We also show that a high proportion of T2D susceptibility loci harbor independent association signals influencing apparently unrelated complex traits. © 2010 Nature America, Inc. All rights reserved.
Abstract.
2009
Brent Richards J, Waterworth D, O'Rahilly S, Hivert MF, Loos RJF, Perry JRB, Tanaka T, Timpson NJ, Semple RK, Soranzo N, et al (2009). A genome-wide association study reveals variants in ARL15 that influence adiponectin levels.
PLoS Genetics,
5(12).
Abstract:
A genome-wide association study reveals variants in ARL15 that influence adiponectin levels
The adipocyte-derived protein adiponectin is highly heritable and inversely associated with risk of type 2 diabetes mellitus (T2D) and coronary heart disease (CHD). We meta-analyzed 3 genome-wide association studies for circulating adiponectin levels (n = 8,531) and sought validation of the lead single nucleotide polymorphisms (SNPs) in 5 additional cohorts (n = 6,202). Five SNPs were genome-wide significant in their relationship with adiponectin (P≤5×10 ). We then tested whether these 5 SNPs were associated with risk of T2D and CHD using a Bonferroni-corrected threshold of P≤0.011 to declare statistical significance for these disease associations. SNPs at the adiponectin-encoding ADIPOQ locus demonstrated the strongest associations with adiponectin levels (P-combined = 9.2×10. for lead SNP, rs266717, n = 14,733). A novel variant in the ARL15 (ADP-ribosylation factor-like 15) gene was associated with lower circulating levels of adiponectin (rs4311394-G, P-combined = 2.9×10 , n = 14,733). This same risk allele at ARL15 was also associated with a higher risk of CHD (odds ratio [OR] = 1.12, P = 8.5×10 , n = 22,421) more nominally, an increased risk of T2D (OR = 1.11, P = 3.2×10 , n = 10,128), and several metabolic traits. Expression studies in humans indicated that ARL15 is well-expressed in skeletal muscle. These findings identify a novel protein, ARL15, which influences circulating adiponectin levels and may impact upon CHD risk. © 2009 Richards et al. -8 -19 -8 -6 -3
Abstract.
Perry JRB, Ferrucci L, Bandinelli S, Guralnik J, Semba RD, Rice N, Melzer D, DIAGRAM Consortium, Saxena R, Scott LJ, et al (2009). Circulating beta-carotene levels and type 2 diabetes-cause or effect?.
Diabetologia,
52(10), 2117-2121.
Abstract:
Circulating beta-carotene levels and type 2 diabetes-cause or effect?
AIMS/HYPOTHESIS: Circulating beta-carotene levels are inversely associated with risk of type 2 diabetes, but the causal direction of this association is not certain. In this study we used a Mendelian randomisation approach to provide evidence for or against the causal role of the antioxidant vitamin beta-carotene in type 2 diabetes. METHODS: We used a common polymorphism (rs6564851) near the BCMO1 gene, which is strongly associated with circulating beta-carotene levels (p = 2 x 10(-24)), with each G allele associated with a 0.27 standard deviation increase in levels. We used data from the InCHIANTI and Uppsala Longitudinal Study of Adult Men (ULSAM) studies to estimate the association between beta-carotene levels and type 2 diabetes. We next used a triangulation approach to estimate the expected effect of rs6564851 on type 2 diabetes risk and compared this with the observed effect using data from 4549 type 2 diabetes patients and 5579 controls from the Diabetes Genetics Replication and Meta-analysis (DIAGRAM) Consortium. RESULTS: a 0.27 standard deviation increase in beta-carotene levels was associated with an OR of 0.90 (95% CI 0.86-0.95) for type 2 diabetes in the InCHIANTI study. This association was similar to that of the ULSAM study (OR 0.90 [0.84-0.97]). In contrast, there was no association between rs6564851 and type 2 diabetes (OR 0.98 [0.93-1.04], p = 0.58); this effect size was also smaller than that expected, given the known associations between rs6564851 and beta-carotene levels, and the associations between beta-carotene levels and type 2 diabetes. CONCLUSIONS/INTERPRETATION: Our findings in this Mendelian randomisation study are in keeping with randomised controlled trials suggesting that beta-carotene is not causally protective against type 2 diabetes.
Abstract.
Author URL.
Ferrucci L, Perry JRB, Matteini A, Perola M, Tanaka T, Silander K, Rice N, Melzer D, Murray A, Cluett C, et al (2009). Common variation in the beta-carotene 15,15'-monooxygenase 1 gene affects circulating levels of carotenoids: a genome-wide association study.
Am J Hum Genet,
84(2), 123-133.
Abstract:
Common variation in the beta-carotene 15,15'-monooxygenase 1 gene affects circulating levels of carotenoids: a genome-wide association study.
Low plasma levels of carotenoids and tocopherols are associated with increased risk of chronic disease and disability. Because dietary intake of these lipid-soluble antioxidant vitamins is only poorly correlated with plasma levels, we hypothesized that circulating carotenoids (vitamin A-related compounds) and tocopherols (vitamin E-related compounds) are affected by common genetic variation. By conducting a genome-wide association study in a sample of Italians (n = 1190), we identified novel common variants associated with circulating carotenoid levels and known lipid variants associated with alpha-tocopherol levels. Effects were replicated in the Women's Health and Aging Study (n = 615) and in the alpha-Tocopherol, beta-Carotene Cancer Prevention (ATBC) study (n = 2136). In meta-analyses including all three studies, the G allele at rs6564851, near the beta-carotene 15,15'-monooxygenase 1 (BCMO1) gene, was associated with higher beta-carotene (p = 1.6 x 10(-24)) and alpha-carotene (p = 0.0001) levels and lower lycopene (0.003), zeaxanthin (p = 1.3 x 10(-5)), and lutein (p = 7.3 x 10(-15)) levels, with effect sizes ranging from 0.10-0.28 SDs per allele. Interestingly, this genetic variant had no significant effect on plasma retinol (p > 0.05). The SNP rs12272004, in linkage disequilibrium with the S19W variant in the APOA5 gene, was associated with alpha-tocopherol (meta-analysis p = 7.8 x 10(-10)) levels, and this association was substantially weaker when we adjusted for triglyceride levels (p = 0.002). Our findings might shed light on the controversial relationship between lipid-soluble anti-oxidant nutrients and human health.
Abstract.
Author URL.
Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, Najjar SS, Zhao JH, Heath SC, Eyheramendy S, et al (2009). Genome-wide association study identifies eight loci associated with blood pressure.
Nature Genetics,
41(6), 666-676.
Abstract:
Genome-wide association study identifies eight loci associated with blood pressure
Elevated blood pressure is a common, heritable cause of cardiovascular disease worldwide. To date, identification of common genetic variants influencing blood pressure has proven challenging. We tested 2.5 million genotyped and imputed SNPs for association with systolic and diastolic blood pressure in 34,433 subjects of European ancestry from the Global BPgen consortium and followed up findings with direct genotyping (N 71,225 European ancestry, N 12,889 Indian Asian ancestry) and in silico comparison (CHARGE consortium, N = 29,136). We identified association between systolic or diastolic blood pressure and common variants in eight regions near the CYP17A1 (P = 7 × 10 24), CYP1A2 (P = 1 × 10 23), FGF5 (P = 1 × 10 21), SH2B3 (P = 3 × 10 18), MTHFR (P = 2 × 10 13), c10orf107 (P = 1 × 10 9), ZNF652 (P = 5 × 10 9) and PLCD3 (P = 1 × 10 8) genes. All variants associated with continuous blood pressure were associated with dichotomous hypertension. These associations between common variants and blood pressure and hypertension offer mechanistic insights into the regulation of blood pressure and may point to novel targets for interventions to prevent cardiovascular disease.
Abstract.
Perry JRB, McCarthy MI, Hattersley AT, Zeggini E, Wellcome Trust Case Control Consortium, Weedon MN, Frayling TM (2009). Interrogating type 2 diabetes genome-wide association data using a biological pathway-based approach.
Diabetes,
58(6), 1463-1467.
Abstract:
Interrogating type 2 diabetes genome-wide association data using a biological pathway-based approach.
OBJECTIVE: Recent genome-wide association studies have resulted in a dramatic increase in our knowledge of the genetic loci involved in type 2 diabetes. In a complementary approach to these single-marker studies, we attempted to identify biological pathways associated with type 2 diabetes. This approach could allow us to identify additional risk loci. RESEARCH DESIGN AND METHODS: We used individual level genotype data generated from the Wellcome Trust Case Control Consortium (WTCCC) type 2 diabetes study, consisting of 393,143 autosomal SNPs, genotyped across 1,924 case subjects and 2,938 control subjects. We sought additional evidence from summary level data available from the Diabetes Genetics Initiative (DGI) and the Finland-United States Investigation of NIDDM Genetics (FUSION) studies. Statistical analysis of pathways was performed using a modification of the Gene Set Enrichment Algorithm (GSEA). A total of 439 pathways were analyzed from the Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and BioCarta databases. RESULTS: After correcting for the number of pathways tested, we found no strong evidence for any pathway showing association with type 2 diabetes (top P(adj) = 0.31). The candidate WNT-signaling pathway ranked top (nominal P = 0.0007, excluding TCF7L2; P = 0.002), containing a number of promising single gene associations. These include CCND2 (rs11833537; P = 0.003), SMAD3 (rs7178347; P = 0.0006), and PRICKLE1 (rs1796390; P = 0.001), all expressed in the pancreas. CONCLUSIONS: Common variants involved in type 2 diabetes risk are likely to occur in or near genes in multiple pathways. Pathway-based approaches to genome-wide association data may be more successful for some complex traits than others, depending on the nature of the underlying disease physiology.
Abstract.
Author URL.
Perry JRB, Stolk L, Franceschini N, Lunetta KL, Zhai G, McArdle PF, Smith AV, Aspelund T, Bandinelli S, Boerwinkle E, et al (2009). Meta-analysis of genome-wide association data identifies two loci influencing age at menarche.
Nat Genet,
41(6), 648-650.
Abstract:
Meta-analysis of genome-wide association data identifies two loci influencing age at menarche.
We conducted a meta-analysis of genome-wide association data to detect genes influencing age at menarche in 17,510 women. The strongest signal was at 9q31.2 (P = 1.7 × 10(-9)), where the nearest genes include TMEM38B, FKTN, FSD1L, TAL2 and ZNF462. The next best signal was near the LIN28B gene (rs7759938; P = 7.0 × 10(-9)), which also influences adult height. We provide the first evidence for common genetic variants influencing female sexual maturation.
Abstract.
Author URL.
Kong A, Steinthorsdottir V, Masson G, Thorleifsson G, Sulem P, Besenbacher S, Jonasdottir A, Sigurdsson A, Kristinsson KT, Jonasdottir A, et al (2009). Parental origin of sequence variants associated with complex diseases.
Nature,
462(7275), 868-874.
Abstract:
Parental origin of sequence variants associated with complex diseases
Effects of susceptibility variants may depend on from which parent they are inherited. Although many associations between sequence variants and human traits have been discovered through genome-wide associations, the impact of parental origin has largely been ignored. Here we show that for 38,167 Icelanders genotyped using single nucleotide polymorphism (SNP) chips, the parental origin of most alleles can be determined. For this we used a combination of genealogy and long-range phasing. We then focused on SNPs that associate with diseases and are within 500 kilobases of known imprinted genes. Seven independent SNP associations were examined. Fiveone with breast cancer, one with basal-cell carcinoma and three with type 2 diabeteshave parental-origin-specific associations. These variants are located in two genomic regions, 11p15 and 7q32, each harbouring a cluster of imprinted genes. Furthermore, we observed a novel association between the SNP rs2334499 at 11p15 and type 2 diabetes. Here the allele that confers risk when paternally inherited is protective when maternally transmitted. We identified a differentially methylated CTCF-binding site at 11p15 and demonstrated correlation of rs2334499 with decreased methylation of that site. © 2009 Macmillan Publishers Limited. All rights reserved.
Abstract.
Perry JRB, Weedon MN, Frayling TM (2009). Response to comment on: Perry et al. (2009) Interrogating type 2 diabetes genome-wide association data using a biological pathway-based approach. Diabetes;58:1463-1467. Diabetes, 58(9).
Freathy RM, Bennett AJ, Ring SM, Shields B, Groves CJ, Timpson NJ, Weedon MN, Zeggini E, Lindgren CM, Lango H, et al (2009). Type 2 diabetes risk alleles are associated with reduced size at birth.
Diabetes,
58(6), 1428-1433.
Abstract:
Type 2 diabetes risk alleles are associated with reduced size at birth.
OBJECTIVE: Low birth weight is associated with an increased risk of type 2 diabetes. The mechanisms underlying this association are unknown and may represent intrauterine programming or two phenotypes of one genotype. The fetal insulin hypothesis proposes that common genetic variants that reduce insulin secretion or action may predispose to type 2 diabetes and also reduce birth weight, since insulin is a key fetal growth factor. We tested whether common genetic variants that predispose to type 2 diabetes also reduce birth weight. RESEARCH DESIGN AND METHODS: We genotyped single-nucleotide polymorphisms (SNPs) at five recently identified type 2 diabetes loci (CDKAL1, CDKN2A/B, HHEX-IDE, IGF2BP2, and SLC30A8) in 7,986 mothers and 19,200 offspring from four studies of white Europeans. We tested the association between maternal or fetal genotype at each locus and birth weight of the offspring. RESULTS: We found that type 2 diabetes risk alleles at the CDKAL1 and HHEX-IDE loci were associated with reduced birth weight when inherited by the fetus (21 g [95% CI 11-31], P = 2 x 10(-5), and 14 g [4-23], P = 0.004, lower birth weight per risk allele, respectively). The 4% of offspring carrying four risk alleles at these two loci were 80 g (95% CI 39-120) lighter at birth than the 8% carrying none (P(trend) = 5 x 10(-7)). There were no associations between birth weight and fetal genotypes at the three other loci or maternal genotypes at any locus. CONCLUSIONS: Our results are in keeping with the fetal insulin hypothesis and provide robust evidence that common disease-associated variants can alter size at birth directly through the fetal genotype.
Abstract.
Author URL.
2008
Perry JRB, Melzer D, Maggio M, Hernandez D, Singleton A, Ferrucci L, Palmer C, Bennett A, Ruokonen A, Panicker V, et al (2008). A Mendelian randomisation study provides initial evidence that sex hormone binding globulin (SHBG) levels alter type 2 diabetes risk.
Author URL.
Panicker V, Cluett C, Shields B, Murray A, Parnell KS, Perry JRB, Weedon MN, Singleton A, Hernandez D, Evans J, et al (2008). A common variation in deiodinase 1 gene DIO1 is associated with the relative levels of free thyroxine and triiodothyronine.
J Clin Endocrinol Metab,
93(8), 3075-3081.
Abstract:
A common variation in deiodinase 1 gene DIO1 is associated with the relative levels of free thyroxine and triiodothyronine.
INTRODUCTION: Genetic factors influence circulating thyroid hormone levels, but the common gene variants involved have not been conclusively identified. The genes encoding the iodothyronine deiodinases are good candidates because they alter the balance of thyroid hormones. We aimed to thoroughly examine the role of common variation across the three deiodinase genes in relation to thyroid hormones. METHODS: We used HapMap data to select single-nucleotide polymorphisms (SNPs) that captured a large proportion of the common genetic variation across the three deiodinase genes. We analyzed these initially in a cohort of 552 people on T(4) replacement. Suggestive findings were taken forward into three additional studies in people not on T(4) (total n = 2513) and metaanalyzed for confirmation. RESULTS: a SNP in the DIO1 gene, rs2235544, was associated with the free T(3) to free T(4) ratio with genome-wide levels of significance (P = 3.6 x 10(-13)). The C-allele of this SNP was associated with increased deiodinase 1 (D1) function with resulting increase in free T(3)/T(4) ratio and free T(3) and decrease in free T(4) and rT(3). There was no effect on serum TSH levels. None of the SNPs in the genes coding for D2 or D3 had any influence on hormone levels. CONCLUSIONS: This study provides convincing evidence that common genetic variation in DIO1 alters deiodinase function, resulting in an alteration in the balance of circulating free T(3) to free T(4). This should prove a valuable tool to assess the relative effects of circulating free T(3) vs. free T(4) on a wide range of biological parameters.
Abstract.
Author URL.
Melzer D, Perry JRB, Hernandez D, Corsi A-M, Stevens K, Rafferty I, Lauretani F, Murray A, Gibbs JR, Paolisso G, et al (2008). A genome-wide association study identifies protein quantitative trait loci (pQTLs).
PLoS Genet,
4(5).
Abstract:
A genome-wide association study identifies protein quantitative trait loci (pQTLs).
There is considerable evidence that human genetic variation influences gene expression. Genome-wide studies have revealed that mRNA levels are associated with genetic variation in or close to the gene coding for those mRNA transcripts - cis effects, and elsewhere in the genome - trans effects. The role of genetic variation in determining protein levels has not been systematically assessed. Using a genome-wide association approach we show that common genetic variation influences levels of clinically relevant proteins in human serum and plasma. We evaluated the role of 496,032 polymorphisms on levels of 42 proteins measured in 1200 fasting individuals from the population based InCHIANTI study. Proteins included insulin, several interleukins, adipokines, chemokines, and liver function markers that are implicated in many common diseases including metabolic, inflammatory, and infectious conditions. We identified eight Cis effects, including variants in or near the IL6R (p = 1.8x10(-57)), CCL4L1 (p = 3.9x10(-21)), IL18 (p = 6.8x10(-13)), LPA (p = 4.4x10(-10)), GGT1 (p = 1.5x10(-7)), SHBG (p = 3.1x10(-7)), CRP (p = 6.4x10(-6)) and IL1RN (p = 7.3x10(-6)) genes, all associated with their respective protein products with effect sizes ranging from 0.19 to 0.69 standard deviations per allele. Mechanisms implicated include altered rates of cleavage of bound to unbound soluble receptor (IL6R), altered secretion rates of different sized proteins (LPA), variation in gene copy number (CCL4L1) and altered transcription (GGT1). We identified one novel trans effect that was an association between ABO blood group and tumour necrosis factor alpha (TNF-alpha) levels (p = 6.8x10(-40)), but this finding was not present when TNF-alpha was measured using a different assay , or in a second study, suggesting an assay-specific association. Our results show that protein levels share some of the features of the genetics of gene expression. These include the presence of strong genetic effects in cis locations. The identification of protein quantitative trait loci (pQTLs) may be a powerful complementary method of improving our understanding of disease pathways.
Abstract.
Author URL.
Full text.
Weedon MN, Lango H, Lindgren CM, Wallace C, Evans DM, Mangino M, Freathy RM, Perry JRB, Stevens S, Hall AS, et al (2008). Genome-wide association analysis identifies 20 loci that influence adult height.
Nat Genet,
40(5), 575-583.
Abstract:
Genome-wide association analysis identifies 20 loci that influence adult height.
Adult height is a model polygenic trait, but there has been limited success in identifying the genes underlying its normal variation. To identify genetic variants influencing adult human height, we used genome-wide association data from 13,665 individuals and genotyped 39 variants in an additional 16,482 samples. We identified 20 variants associated with adult height (P < 5 x 10(-7), with 10 reaching P < 1 x 10(-10)). Combined, the 20 SNPs explain approximately 3% of height variation, with a approximately 5 cm difference between the 6.2% of people with 17 or fewer 'tall' alleles compared to the 5.5% with 27 or more 'tall' alleles. The loci we identified implicate genes in Hedgehog signaling (IHH, HHIP, PTCH1), extracellular matrix (EFEMP1, ADAMTSL3, ACAN) and cancer (CDK6, HMGA2, DLEU7) pathways, and provide new insights into human growth and developmental processes. Finally, our results provide insights into the genetic architecture of a classic quantitative trait.
Abstract.
Author URL.
Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T, de Bakker PIW, Abecasis GR, Almgren P, Andersen G, et al (2008). Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes.
Nat Genet,
40(5), 638-645.
Abstract:
Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes.
Genome-wide association (GWA) studies have identified multiple loci at which common variants modestly but reproducibly influence risk of type 2 diabetes (T2D). Established associations to common and rare variants explain only a small proportion of the heritability of T2D. As previously published analyses had limited power to identify variants with modest effects, we carried out meta-analysis of three T2D GWA scans comprising 10,128 individuals of European descent and approximately 2.2 million SNPs (directly genotyped and imputed), followed by replication testing in an independent sample with an effective sample size of up to 53,975. We detected at least six previously unknown loci with robust evidence for association, including the JAZF1 (P = 5.0 x 10(-14)), CDC123-CAMK1D (P = 1.2 x 10(-10)), TSPAN8-LGR5 (P = 1.1 x 10(-9)), THADA (P = 1.1 x 10(-9)), ADAMTS9 (P = 1.2 x 10(-8)) and NOTCH2 (P = 4.1 x 10(-8)) gene regions. Our results illustrate the value of large discovery and follow-up samples for gaining further insights into the inherited basis of T2D.
Abstract.
Author URL.
Perry JRB, Frayling TM (2008). New gene variants alter type 2 diabetes risk predominantly through reduced beta-cell function.
Curr Opin Clin Nutr Metab Care,
11(4), 371-377.
Abstract:
New gene variants alter type 2 diabetes risk predominantly through reduced beta-cell function.
PURPOSE OF REVIEW: over the past 18 months, the number of gene loci robustly associated with type 2 diabetes has risen from three to 18. In this study, we focus on explaining the genome-wide approach that has led to most of these discoveries and discuss some of the early insights the new gene loci have provided into the aetiology of type 2 diabetes. RECENT FINDINGS: Recent genome-wide association studies have provided an important resource for furthering our understanding of type 2 diabetes disease mechanisms. Genes previously unsuspected of playing a role in diabetes are now implicated in the disease process. These include genes in cell cycling control (CDKN2A/2B, CDKAL1), transcription factors (TCF7L2, HHEX), and ion channels (SLC30A8). These variants are all associated with insulin-secretory defects in the general population and show little if any relationship to insulin resistance. Two common variants (near or in FTO and MC4R) alter diabetes risk through a primary effect on obesity. SUMMARY: Recent genome-wide association studies show that there are now 18 gene loci associated with the risk of type 2 diabetes. Most of these T2D gene loci affect insulin secretion.
Abstract.
Author URL.
Yuan X, Waterworth D, Perry JRB, Lim N, Song K, Chambers JC, Zhang W, Vollenweider P, Stirnadel H, Johnson T, et al (2008). Population-based genome-wide association studies reveal six loci influencing plasma levels of liver enzymes.
Am J Hum Genet,
83(4), 520-528.
Abstract:
Population-based genome-wide association studies reveal six loci influencing plasma levels of liver enzymes.
Plasma liver-enzyme tests are widely used in the clinic for the diagnosis of liver diseases and for monitoring the response to drug treatment. There is considerable evidence that human genetic variation influences plasma levels of liver enzymes. However, such genetic variation has not been systematically assessed. In the present study, we performed a genome-wide association study of plasma liver-enzyme levels in three populations (total n = 7715) with replication in three additional cohorts (total n = 4704). We identified two loci influencing plasma levels of alanine-aminotransferase (ALT) (CPN1-ERLIN1-CHUK on chromosome 10 and PNPLA3-SAMM50 on chromosome 22), one locus influencing gamma-glutamyl transferase (GGT) levels (HNF1A on chromosome 12), and three loci for alkaline phosphatase (ALP) levels (ALPL on chromosome 1, GPLD1 on chromosome 6, and JMJD1C-REEP3 on chromosome 10). In addition, we confirmed the associations between the GGT1 locus and GGT levels and between the ABO locus and ALP levels. None of the ALP-associated SNPs were associated with other liver tests, suggesting intestine and/or bone specificity. The mechanisms underlying the associations may involve cis- or trans-transcriptional effects (some of the identified variants were associated with mRNA transcription in human liver or lymphoblastoid cells), dysfunction of the encoded proteins (caused by missense variations at the functional domains), or other unknown pathways. These findings may help in the interpretation of liver-enzyme tests and provide candidate genes for liver diseases of viral, metabolic, autoimmune, or toxic origin. The specific associations with ALP levels may point to genes for bone or intestinal diseases.
Abstract.
Author URL.
2007
Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, Perry JRB, Elliott KS, Lango H, Rayner NW, et al (2007). A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity.
Science,
316(5826), 889-894.
Abstract:
A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity.
Obesity is a serious international health problem that increases the risk of several common diseases. The genetic factors predisposing to obesity are poorly understood. A genome-wide search for type 2 diabetes-susceptibility genes identified a common variant in the FTO (fat mass and obesity associated) gene that predisposes to diabetes through an effect on body mass index (BMI). An additive association of the variant with BMI was replicated in 13 cohorts with 38,759 participants. The 16% of adults who are homozygous for the risk allele weighed about 3 kilograms more and had 1.67-fold increased odds of obesity when compared with those not inheriting a risk allele. This association was observed from age 7 years upward and reflects a specific increase in fat mass.
Abstract.
Author URL.
Lango H, Weedon MN, Timpson NJ, Zeggini E, Freathy RM, Lindgren CM, Perry JRB, Elliott KS, Rayner NW, Groves CJ, et al (2007). A common variant in the FTO gene region is associated with BMI in the general population and predisposes to adult and childhood obesity.
Author URL.
Weedon MN, Lettre G, Freathy RM, Lindgren CM, Voight BF, Perry JRB, Elliott KS, Hackett R, Guiducci C, Shields B, et al (2007). A common variant of HMGA2 is associated with adult and childhood height in the general population.
Nat Genet,
39(10), 1245-1250.
Abstract:
A common variant of HMGA2 is associated with adult and childhood height in the general population.
Human height is a classic, highly heritable quantitative trait. To begin to identify genetic variants influencing height, we examined genome-wide association data from 4,921 individuals. Common variants in the HMGA2 oncogene, exemplified by rs1042725, were associated with height (P = 4 x 10(-8)). HMGA2 is also a strong biological candidate for height, as rare, severe mutations in this gene alter body size in mice and humans, so we tested rs1042725 in additional samples. We confirmed the association in 19,064 adults from four further studies (P = 3 x 10(-11), overall P = 4 x 10(-16), including the genome-wide association data). We also observed the association in children (P = 1 x 10(-6), N = 6,827) and a tall/short case-control study (P = 4 x 10(-6), N = 3,207). We estimate that rs1042725 explains approximately 0.3% of population variation in height (approximately 0.4 cm increased adult height per C allele). There are few examples of common genetic variants reproducibly associated with human quantitativetraits; these results represent, to our knowledge, the first consistently replicated association with adult and childhood height.
Abstract.
Author URL.
Wellcome Trust Case Control Consortium, Australo-Anglo-American Spondylitis Consortium (TASC), Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A, Kwiatkowski DP, McCarthy MI, et al (2007). Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants.
Nat Genet,
39(11), 1329-1337.
Abstract:
Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants.
We have genotyped 14,436 nonsynonymous SNPs (nsSNPs) and 897 major histocompatibility complex (MHC) tag SNPs from 1,000 independent cases of ankylosing spondylitis (AS), autoimmune thyroid disease (AITD), multiple sclerosis (MS) and breast cancer (BC). Comparing these data against a common control dataset derived from 1,500 randomly selected healthy British individuals, we report initial association and independent replication in a North American sample of two new loci related to ankylosing spondylitis, ARTS1 and IL23R, and confirmation of the previously reported association of AITD with TSHR and FCRL3. These findings, enabled in part by increased statistical power resulting from the expansion of the control reference group to include individuals from the other disease groups, highlight notable new possibilities for autoimmune regulation and suggest that IL23R may be a common susceptibility factor for the major 'seronegative' diseases.
Abstract.
Author URL.
Weedon MN, Perry JRB, Zeggini E, Lango H, Lindgren CM, Freathy R, Elliot KS, Shields B, Timpson NJ, Rayner NW, et al (2007). Biological pathway analysis for type 2 diabetes using genome-wide association data.
Author URL.
Timpson NJ, Zeggini E, Weedon MN, Lingdren CM, Frayling TM, Elliott KS, Lango H, Perry JRB, Rayner NW, Freathy RM, et al (2007). Genome-wide association data highlight an aetiological role for disturbances in cyclin-dependent kinase pathways in type 2 diabetes.
Author URL.
Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A, Kwiatkowski DP, McCarthy MI, Ouwehand WH, Samani NJ, et al (2007). Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls.
NATURE,
447(7145), 661-678.
Author URL.
Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, Timpson NJ, Perry JRB, Rayner NW, Freathy RM, et al (2007). Large-scale replication typing of modest signals from genome-wide association studies identifies additional type 2 diabetes susceptibility variants in the IGF2BP2 and VEGFA genes.
Author URL.
Nejentsev S, Howson JMM, Walker NM, Szeszko J, Field SF, Stevens HE, Reynolds P, Hardy M, King E, Masters J, et al (2007). Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A.
Nature,
450(7171), 887-892.
Abstract:
Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A
The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1-3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region. Owing to the region's extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods - recursive partitioning and regression - to pinpoint disease susceptibility to the MHC class I genes HLA-B and HLA-A (risk ratios >1.5; P. = 2.01 × 10. and 2.35 × 10 , respectively) in addition to the established associations of the MHC class II genes. Other loci with smaller and/or rarer effects might also be involved, but to find these, future searches must take into account both the HLA class II and class I genes and use even larger samples. Taken together with previous studies, we conclude that MHC-class-I-mediated events, principally involving HLA-B*39, contribute to the aetiology of type 1 diabetes. ©2007 Nature Publishing Group. combined -19 -13
Abstract.
Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, Timpson NJ, Perry JRB, Rayner NW, Freathy RM, et al (2007). Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes.
Science,
316(5829), 1336-1341.
Abstract:
Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes.
The molecular mechanisms involved in the development of type 2 diabetes are poorly understood. Starting from genome-wide genotype data for 1924 diabetic cases and 2938 population controls generated by the Wellcome Trust Case Control Consortium, we set out to detect replicated diabetes association signals through analysis of 3757 additional cases and 5346 controls and by integration of our findings with equivalent data from other international consortia. We detected diabetes susceptibility loci in and around the genes CDKAL1, CDKN2A/CDKN2B, and IGF2BP2 and confirmed the recently described associations at HHEX/IDE and SLC30A8. Our findings provide insight into the genetic architecture of type 2 diabetes, emphasizing the contribution of multiple variants of modest effect. The regions identified underscore the importance of pathways influencing pancreatic beta cell development and function in the etiology of type 2 diabetes.
Abstract.
Author URL.