Publications by year
In Press
Wakeling M, Owens NDL, Hopkinson JR, Johnson MB, Houghton JAL, Dastamani A, Flaxman CS, Wyatt RC, Hewat TI, Hopkins JJ, et al (In Press). A novel disease mechanism leading to the expression of a disallowed gene in the pancreatic beta-cell identified by non-coding, regulatory mutations controlling HK1.
Nature GeneticsAbstract:
A novel disease mechanism leading to the expression of a disallowed gene in the pancreatic beta-cell identified by non-coding, regulatory mutations controlling HK1
Gene expression is tightly regulated with many genes exhibiting cell-specific silencing when their protein product would disrupt normal cellular function. This silencing is largely controlled by non-coding elements and their disruption might cause human disease. We performed gene-agnostic screening of the non-coding regions to discover new molecular causes of congenital hyperinsulinism. This identified 14 non-coding de novo mutations affecting a 42bp conserved region encompassed by a regulatory. element in intron 2 of Hexokinase 1 (HK1), a pancreatic beta-cell ‘disallowed’ gene. We demonstrated that these mutations resulted in expression of HK1 in the pancreatic beta-cells causing inappropriate insulin secretion and congenital hyperinsulinism. These mutations identify a regulatory region critical for cell-specific silencing. Importantly, this has revealed a new disease mechanism for non-coding mutations that cause inappropriate expression of a disallowed gene.
Abstract.
2023
Boldison J, Hopkinson JR, Davies J, Pearson JA, Leete P, Richardson S, Morgan NG, Wong FS (2023). Gene expression profiling in NOD mice reveals that B cells are highly educated by the pancreatic environment during autoimmune diabetes.
Diabetologia,
66(3), 551-566.
Abstract:
Gene expression profiling in NOD mice reveals that B cells are highly educated by the pancreatic environment during autoimmune diabetes
Aims/hypothesis: B cells play an important role in driving the development of type 1 diabetes; however, it remains unclear how they contribute to local beta cell destruction during disease progression. Here, we use gene expression profiling of B cell subsets identified in inflamed pancreatic tissue to explore their primary functional role during the progression of autoimmune diabetes. Methods: Transcriptional profiling was performed on FACS-sorted B cell subsets isolated from pancreatic islets and the pancreatic lymph nodes of NOD mice. Results: B cells are highly modified by the inflamed pancreatic tissue and can be distinguished by their transcriptional profile from those in the lymph nodes. We identified both a discrete and a core shared gene expression profile in islet CD19+CD138– and CD19+CD138+ B cell subsets, the latter of which is known to have enriched autoreactivity during diabetes development. On localisation to pancreatic islets, compared with CD138– B cells, CD138+ B cells overexpress genes associated with adhesion molecules and growth factors. Their shared signature consists of gene expression changes related to the differentiation of antibody-secreting cells and gene regulatory networks associated with IFN signalling pathways, proinflammatory cytokines and Toll-like receptor (TLR) activation. Finally, abundant TLR7 expression was detected in islet B cells and was enhanced specifically in CD138+ B cells. Conclusions/interpretation: Our study provides a detailed transcriptional analysis of islet B cells. Specific gene signatures and interaction networks have been identified that point towards a functional role for B cells in driving autoimmune diabetes. Graphical abstract: [Figure not available: see fulltext.].
Abstract.
2021
Chaffey JR, Young J, Leslie KA, Partridge K, Akhbari P, Dhayal S, Hill JL, Wedgwood KCA, Burnett E, Russell MA, et al (2021). Investigation of the utility of the 1.1B4 cell as a model human beta cell line for study of persistent enteroviral infection.
Sci Rep,
11(1).
Abstract:
Investigation of the utility of the 1.1B4 cell as a model human beta cell line for study of persistent enteroviral infection.
The generation of a human pancreatic beta cell line which reproduces the responses seen in primary beta cells, but is amenable to propagation in culture, has long been an important goal in diabetes research. This is particularly true for studies focussing on the role of enteroviral infection as a potential cause of beta-cell autoimmunity in type 1 diabetes. In the present work we made use of a clonal beta cell line (1.1B4) available from the European Collection of Authenticated Cell Cultures, which had been generated by the fusion of primary human beta-cells with a pancreatic ductal carcinoma cell, PANC-1. Our goal was to study the factors allowing the development and persistence of a chronic enteroviral infection in human beta-cells. Since PANC-1 cells have been reported to support persistent enteroviral infection, the hybrid 1.1B4 cells appeared to offer an ideal vehicle for our studies. In support of this, infection of the cells with a Coxsackie virus isolated originally from the pancreas of a child with type 1 diabetes, CVB4.E2, at a low multiplicity of infection, resulted in the development of a state of persistent infection. Investigation of the molecular mechanisms suggested that this response was facilitated by a number of unexpected outcomes including an apparent failure of the cells to up-regulate certain anti-viral response gene products in response to interferons. However, more detailed exploration revealed that this lack of response was restricted to molecular targets that were either activated by, or detected with, human-selective reagents. By contrast, and to our surprise, the cells were much more responsive to rodent-selective reagents. Using multiple approaches, we then established that populations of 1.1B4 cells are not homogeneous but that they contain a mixture of rodent and human cells. This was true both of our own cell stocks and those held by the European Collection of Authenticated Cell Cultures. In view of this unexpected finding, we developed a strategy to harvest, isolate and expand single cell clones from the heterogeneous population, which allowed us to establish colonies of 1.1B4 cells that were uniquely human (h1.1.B4). However, extensive analysis of the gene expression profiles, immunoreactive insulin content, regulated secretory pathways and the electrophysiological properties of these cells demonstrated that they did not retain the principal characteristics expected of human beta cells. Our data suggest that stocks of 1.1B4 cells should be evaluated carefully prior to their use as a model human beta-cell since they may not retain the phenotype expected of human beta-cells.
Abstract.
Author URL.
2020
Chaffey JR, Russell MA, Richardson SJ, Morgan NG (2020). The protein phosphatase inhibitor, PPP1R1A, regulates proliferation in pancreatic beta cells.
Author URL.
2019
Chaffey JR, Russell MA, Richardson SJ, Morgan NG (2019). The protein phosphatase inhibitor, PPP1R1A, is differentially expressed in the islets of individuals with Type 1 diabetes, dependent on duration of disease and age at diagnosis.
Author URL.
2018
Colli ML, Hill JLE, Marroquí L, Chaffey J, Dos Santos RS, Leete P, Coomans de Brachène A, Paula FMM, Op de Beeck A, Castela A, et al (2018). PDL1 is expressed in the islets of people with type 1 diabetes and is up-regulated by interferons-α and-γ via IRF1 induction.
EBioMedicine,
36, 367-375.
Abstract:
PDL1 is expressed in the islets of people with type 1 diabetes and is up-regulated by interferons-α and-γ via IRF1 induction.
BACKGROUND: Antibodies targeting PD-1 and its ligand PDL1 are used in cancer immunotherapy but may lead to autoimmune diseases, including type 1 diabetes (T1D). It remains unclear whether PDL1 is expressed in pancreatic islets of people with T1D and how is it regulated. METHODS: the expression of PDL1, IRF1, insulin and glucagon was evaluated in samples of T1D donors by immunofluorescence. Cytokine-induced PDL1 expression in the human beta cell line, EndoC-βH1, and in primary human pancreatic islets was determined by real-time RT-PCR, flow cytometry and Western blot. Specific and previously validated small interference RNAs were used to inhibit STAT1, STAT2, IRF1 and JAK1 signaling. Key results were validated using the JAK inhibitor Ruxolitinib. FINDINGS: PDL1 was present in insulin-positive cells from twelve T1D individuals (6 living and 6 deceased donors) but absent from insulin-deficient islets or from the islets of six non-diabetic controls. Interferons-α and -γ, but not interleukin-1β, induced PDL1 expression in vitro in human islet cells and EndoC-βH1 cells. Silencing of STAT1 or STAT2 individually did not prevent interferon-α-induced PDL1, while blocking of JAKs - a proposed therapeutic strategy for T1D - or IRF1 prevented PDL1 induction. INTERPRETATION: These findings indicate that PDL1 is expressed in beta cells from people with T1D, possibly to attenuate the autoimmune assault, and that it is induced by both type I and II interferons via IRF1.
Abstract.
Author URL.
Chaffey JR, Russell M, Richardson S, Morgan N (2018). Virally-induced interferon-response proteins are upregulated dramatically in the islets of individuals with recent-onset Type 1 diabetes.
Author URL.