Publications by year
2007
Taylor EL, Li JT, Tupper JC, Rossi AG, Winn RK, Harlan JM (2007). GEA 3162, a peroxynitrite donor, induces Bcl-2-sensitive, p53-independent apoptosis in murine bone marrow cells.
Biochem Pharmacol,
74(7), 1039-1049.
Abstract:
GEA 3162, a peroxynitrite donor, induces Bcl-2-sensitive, p53-independent apoptosis in murine bone marrow cells.
Apoptosis may be regulated by oxidants such as peroxynitrite (ONOO(-)). The tumour suppressor, p53, has been reported to play a crucial role in apoptosis induced by oxidants, therefore we assessed the ability of a ONOO(-) donor, GEA 3162, to activate caspases and induce mitochondrial permeability in a p53-deficient murine bone marrow cell line, Jaws II. Furthermore, these cells were stably transfected with Bcl-2, in order to investigate the impact of this survival protein on ONOO(-)-induced apoptosis. GEA 3162 activated caspases and induced loss of mitochondrial membrane potential in Jaws II cells. In particular, caspases 3 and 2 were activated, alongside minor activation of caspases 8 and 9, and apoptosis was partially dependent upon p38 MAP kinase activation, with little or no role for JNK. Overexpression of Bcl-2 abolished activation of all caspases and reduced the change in mitochondrial membrane potential. Thus, we have demonstrated that the ONOO(-) donor, GEA 3162, induces apoptosis in Jaws II murine myeloid cells despite lacking functional p53, via a pathway that principally involves caspases 2 and 3 and mitochondrial changes. This is blocked by overexpression of Bcl-2 via a mechanism that does not appear to merely reflect stabilisation of the mitochondrial membrane.
Abstract.
Author URL.
2005
Shaw CA, Taylor EL, Megson IL, Rossi AG (2005). Nitric oxide and the resolution of inflammation: implications for atherosclerosis.
Mem Inst Oswaldo Cruz,
100 Suppl 1, 67-71.
Abstract:
Nitric oxide and the resolution of inflammation: implications for atherosclerosis.
The ubiquitous free radical, nitric oxide (NO), plays an important role in many biological processes including the regulation of the inflammatory response. Alterations in NO synthesis by endogenous systems likely influence inflammatory processes occurring in a wide range of diseases including many in the cardiovascular system (e.g. atherosclerosis). Progression of inflammatory conditions depends not only upon the recruitment and activation of inflammatory cells but also upon their subsequent removal from the inflammatory milieu. Apoptosis, or programmed cell death, is a fundamental process regulating inflammatory cell survival and is critically involved in ensuring the successful resolution of an inflammatory response. Apoptosis results in shutdown of secretory pathways and renders effete, but potentially highly histotoxic, cells instantly recognisable for non-inflammatory clearance by phagocytes (e.g. macrophages). However, dysregulation of apoptosis and phagocytic clearance mechanisms can have drastic consequences for development and resolution of inflammatory processes. In this review we highlight the complexities of NO-mediated regulation of inflammatory cell apoptosis and clearance by phagocytes and discuss the molecular mechanisms controlling these NO mediated effects. We believe that manipulation of pathways involving NO may have previously unrecognised therapeutic potential for limiting or resolving inflammatory and cardiovascular disease.
Abstract.
Author URL.
Walker A, Ward C, Taylor EL, Dransfield I, Hart SP, Haslett C, Rossi AG (2005). Regulation of neutrophil apoptosis and removal of apoptotic cells.
Curr Drug Targets Inflamm Allergy,
4(4), 447-454.
Abstract:
Regulation of neutrophil apoptosis and removal of apoptotic cells.
The accumulation of neutrophils during inflammation is essential for the destruction and removal of invading microorganisms. However, for resolution of inflammation to occur, neutrophils must also be removed from the inflammatory site since these cells are capable of releasing tissue toxic molecules. Neutrophil removal has been shown to occur via apoptosis and phagocyte clearance of apoptotic cells. Therefore, manipulation of these processes is likely to be a key therapeutic strategy in the management of inflammatory disease. In this review, we examine mediators of neutrophil survival and apoptosis and the signalling pathways that regulate the balance between life and death in these cells.
Abstract.
Author URL.
2004
Taylor EL, Rossi AG, Shaw CA, Dal Rio FP, Haslett C, Megson IL (2004). GEA 3162 decomposes to co-generate nitric oxide and superoxide and induces apoptosis in human neutrophils via a peroxynitrite-dependent mechanism.
Br J Pharmacol,
143(1), 179-185.
Abstract:
GEA 3162 decomposes to co-generate nitric oxide and superoxide and induces apoptosis in human neutrophils via a peroxynitrite-dependent mechanism.
1. GEA 3162 (1,2,3,4,-oxatriazolium, 5-amino-3-(3,4-dichlorophenyl)-chloride), has powerful effects on neutrophil function and apoptosis, but the underlying mechanisms are unclear, particularly with respect to the possible roles of nitric oxide (NO) and/or peroxynitrite (ONOO(-)). 2. Our hypothesis was that GEA 3162 is a generator of ONOO(-) and that its biological effects on neutrophil apoptosis differ from those of a conventional NO donor. The effects of GEA 3162 were compared to those of the established ONOO(-) donor, 3-morpholinosydnonimine (SIN-1), and the NO donor, diethylamine diazeniumdiolate (DEA/NO) in neutrophils from healthy volunteers. Electrochemical detection and electron paramagnetic resonance were used to define the NO-related species generated from these agents. 3. GEA 3162 and SIN-1 influence neutrophil apoptosis differently from DEA/NO. All three compounds induced morphological neutrophil apoptosis. However, both GEA 3162 and SIN-1 paradoxically inhibited internucleosomal DNA fragmentation, whereas DEA/NO induced fragmentation compared to control. 4. In contrast to DEA/NO, generation of free NO was not detectable in solutions of GEA 3162 or SIN-1 (100 microm). However, Cu/Zn superoxide dismutase (SOD; 50-750 U ml(-1)) unmasked NO generated from these compounds in a concentration-dependent manner. GEA 3162 and SIN-1 oxidised the O(2)(-)- and ONOO(-)-sensitive dye, dihydrorhodamine 123 (DHR 123; 1 microm), suggesting that ONOO(-) released from these compounds is responsible for oxidation of DHR 123. 5. We conclude that GEA 3162 is an ONOO(-) donor with pro-apoptotic properties that more closely resemble SIN-1 than the NO donor, DEA/NO. Moreover, unlike NO, ONOO(-) induces apoptosis in neutrophils via a mechanism that does not require DNA fragmentation.
Abstract.
Author URL.
2003
Taylor EL, Megson IL, Haslett C, Rossi AG (2003). Nitric oxide: a key regulator of myeloid inflammatory cell apoptosis.
Cell Death Differ,
10(4), 418-430.
Abstract:
Nitric oxide: a key regulator of myeloid inflammatory cell apoptosis.
Apoptosis of inflammatory cells is a critical event in the resolution of inflammation, as failure to undergo this form of cell death leads to increased tissue damage and exacerbation of the inflammatory response. Many factors are able to influence the rate of apoptosis in neutrophils, eosinophils, monocytes and macrophages. Among these is the signalling molecule nitric oxide (NO), which possesses both anti- and proapoptotic properties, depending on the concentration and flux of NO, and also the source from which NO is derived. This review summarises the differential effects of NO on inflammatory cell apoptosis and outlines potential mechanisms that have been proposed to explain such actions.
Abstract.
Author URL.
2001
Taylor EL, Megson IL, Haslett C, Rossi AG (2001). Dissociation of DNA fragmentation from other hallmarks of apoptosis in nitric oxide-treated neutrophils: differences between individual nitric oxide donor drugs.
Biochem Biophys Res Commun,
289(5), 1229-1236.
Abstract:
Dissociation of DNA fragmentation from other hallmarks of apoptosis in nitric oxide-treated neutrophils: differences between individual nitric oxide donor drugs.
The events of apoptotic cell death can be experimentally dissociated from each other in certain cell types. Here we demonstrate the ability of structurally diverse nitric oxide (NO) donating compounds to delay or enhance neutrophil apoptosis and to differentially influence distinct parameters of programmed cell death. We provide evidence that high concentrations of the NO donors GEA 3162, SPER/NO, and DEA/NO induce morphological and biochemical markers of neutrophil apoptosis, but that only DEA/NO causes a concomitant increase in DNA fragmentation as evidenced by nuclear propidium iodide intercalation and the classical laddering pattern of electrophoresed DNA. In contrast, both GEA 3162 and SPER/NO inhibit DNA cleavage in a time- and concentration-dependent manner. We are the first to show that DNA fragmentation can be dissociated from other changes of apoptosis in NO-treated neutrophils and that it may therefore be inappropriate to assess NO-induced apoptosis solely by measuring DNA fragmentation in this cell type.
Abstract.
Author URL.