Modelling the load-injury relationship

Latest evidence and future directions

Presented by Dr. Sean Williams
Theoretical basis for monitoring loads

Theoretical basis for monitoring loads

Theoretical basis for monitoring loads

Current best practice?

Acute:Chronic Workload Ratio [ACWR]

Acute | Recent loads (e.g. one week), analogous to state of ‘fatigue’

Chronic | Average loads over last 3-6 weeks, analogous to state of ‘fitness’

![Load vs Week Graph]

Acute:Chronic

\[
\frac{200}{125} = 1.60
\]
Acute:Chronic Workload Ratio

Acute:Chronic Workload Ratio

Calculating acute:chronic workload ratios using exponentially weighted moving averages provides a more sensitive indicator of injury likelihood than rolling averages

Nicholas B Murray,¹ Tim J Gabbett,² Andrew D Townshend,¹ Peter Blanch³,⁴
Smoothed averages

MODELLING THE LOAD-INJURY RELATIONSHIP

Dr. Sean Williams | S.Williams@bath.ac.uk

Acute:Chronic Workload

Load [AU]

EWMA ACWR
Rolling ACWR

1.52
1.03
ACWR and injury prediction

Sensitivity 20%

Specificity 85%

Individual effects

- Using **mixed models**, it’s possible to get **unique effects for each athlete**:

 ![Graph showing individual effects and predicted probability of injury](image)

Aerobic fitness

ACWR > 1.50

Moderators in workload–injury investigations

Table 3: The injury likelihood using the equation derived from studies on three different sports (figure 2) comparing different scenarios of acute and chronic workload.

<table>
<thead>
<tr>
<th>Chronic workload (% of normal average)</th>
<th>Acute workload (% of normal average)</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>60</td>
</tr>
<tr>
<td>100</td>
<td>70</td>
</tr>
<tr>
<td>90</td>
<td>80</td>
</tr>
<tr>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>60</td>
<td>110</td>
</tr>
<tr>
<td>50</td>
<td>120</td>
</tr>
</tbody>
</table>

HRV as a stress/recovery marker

\[p(t) = k_1 g(t) e^{-t/\tau_1} - k_2 h(t) e^{-t/\tau_2} \]

- \(p(t) \) = Performance
- \(g(t) \) = Fitness
- \(h(t) \) = Fatigue
- \(k_1, k_2 \) = Multipliers
- \(\tau_1, \tau_2 \) = Time constants
- \(t \) = Time
Planning optimal workloads

AIM:
Maximise total load, whilst keeping ACWR within safe zone

https://progressiveathleticperformance.com/

Future Directions

MODELLING THE LOAD-INJURY RELATIONSHIP

Additional issues with ACWR?

Mathematical coupling causes spurious correlation within the conventional acute-to-chronic workload ratio calculations

Lorenzo Lolli,¹ Alan M Batterham,¹ Richard Hawkins,² David M Kelly,²,³ Anthony J Strudwick,² Robin Thorpe,²,³ Warren Gregson,³ Greg Atkinson¹
Conclusions

- Current best practice: High chronic loads are required to optimally prepare athletes for competition demands, but these must be achieved gradually and rapid ‘spikes’ in workloads should be avoided.
- Calculating the ACWR using EWMA may be more sensitive to injury risk than rolling averages.
- Our understanding of the moderators of this workload injury relationship is developing.
- Optimisation techniques may be used to create objective training plan designs that satisfy injury risk constraints.
- Technology, analysis and the integration of different forms of load are areas for future direction.